Patents by Inventor Guenter Zeitler

Guenter Zeitler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230067146
    Abstract: Disclosed herein is a medical system (100, 300, 400) comprising a memory (110) storing machine executable instructions (120). The medical system further comprises an anatomical detection module (122). The anatomical detection module is configured for detecting an anatomical deviation in response to inputting tomographic medical scout image data (124). The anatomical detection module is configured for outputting a localization (126) of the anatomical deviation in the tomographic medical scout image data if the anatomical deviation is detected. The medical system further comprises a processor (104) configured for controlling the medical system.
    Type: Application
    Filed: January 26, 2021
    Publication date: March 2, 2023
    Inventors: Charles Loeb TRUWIT, Rolf Juergen WEESE, Guenter Zeitler
  • Patent number: 9638807
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 2, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cornelis Ronda, Herbert Schreinemacher, Guenter Zeitler, Norbert Conrads, Simha Levene
  • Patent number: 9335424
    Abstract: An apparatus includes an integrator (120) that produces a pulse having a peak amplitude indicative of the energy of a detected photon. First discharging circuitry (136) discharges the integrator (120) at a first discharging speed, and second discharging circuitry (124) discharges the integrator (120) at a second discharging speed. The first discharging speed is less than the second discharging speed.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 10, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Roger Steadman, Christian Baeumer, Guenter Zeitler
  • Publication number: 20160061962
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Application
    Filed: June 27, 2013
    Publication date: March 3, 2016
    Inventors: Cornelis RONDA, Herbert SCHREINEMACHER, Guenter ZEITLER, Norbert CONRADS, Simha LEVENE
  • Publication number: 20150001398
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Cornelis RONDA, Herbert SCHREINEMACHER, Guenter ZEITLER, Norbert CONRADS, Simha LEVENE
  • Patent number: 8723132
    Abstract: The invention relates to a radiation detector that is particularly suited for energy resolved single X-ray photon detection in a CT scanner. In a preferred embodiment, the detector has an array of scintillator elements in which incident X-ray photons are converted into bursts of optical photons. Pixels associated to the scintillator elements determine the numbers of optical photons they receive within predetermined acquisition intervals. These numbers can then be digitally processed to detect single X-ray photons and to determine their energy. The pixels may particularly be realized by avalanche photodiodes with associated digital electronic circuits for data processing.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 13, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Baeumer, Thomas Frach, Christoph Herrmann, Gordian Prescher, Torsten Solf, Roger Steadman Booker, Guenter Zeitler
  • Patent number: 8668844
    Abstract: The invention relates to a Gd2O2S:Nd fluorescent material and the use of Nd3+ as emitter in suitable materials.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: March 11, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Cornelis Reinder Ronda, Guenter Zeitler, Herbert Schreinemacher, Norbert Conrads, Detlef Uwe Wiechert
  • Patent number: 8618471
    Abstract: The invention is directed at an apparatus (10), an imaging device and a method for detecting X-ray photons, in particular photons (32,34) in a computer tomograph. Photons (32,34) are converted into an electrical pulse and compared against a threshold using a discriminator (20). The electrical network (12) performing these functions comprises a switching element (28), that can modify the electrical path (22) along which the process signals travel. The trigger signal (VT) for actuating the switching element (28) is derived from an electrical state of the electrical path (22). If a pulse associated to a photon (32,34) is detected, the switching element (28) is actuated in order to avoid that the processing of the charge pulse stemming from a first photon (32) is affected by a subsequent second photon (34).
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: December 31, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Roger Steadman, Guenter Zeitler, Christoph Herrmann, Christian Baeumer
  • Patent number: 8592773
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 26, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker
  • Patent number: 8581200
    Abstract: The invention relates to a radiation detector (200), particularly an X-ray detector, which comprises at least one sensitive layer (212) for the conversion of incident photons (X) into electrical signals. A two-dimensional array of electrodes (213) is located on the front side of the sensitive layer (212), while its back side carries a counter-electrode (211). The size of the electrodes (213) may vary in radiation direction (y) for adapting the counting workload of the electrodes. Moreover, the position of the electrodes (213) with respect to the radiation direction (y) provides information about the energy of the detected photons (X).
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: November 12, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Klaus Jürgen Engel, Guenter Zeitler, Christian Baeumer, Christoph Herrmann, Jens Wiegert, Roland Proksa, Ewald Rössl, Roger Steadman Booker
  • Patent number: 8513613
    Abstract: The invention relates to a radiation detector (100), particularly for X-rays (X) and for ?-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 20, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Herrmann, Christian Baeumer, Roger Steadman Booker, Guenter Zeitler
  • Patent number: 8373130
    Abstract: A radiation detector (100) includes an array of scintillator pixels (102) in optical communication with a photosensor. The scintillator pixels (102) include a hygroscopic scintillator (104) and one or more hermetic covers (106a, 106b). A desiccant (124) may be disposed between a hermetic cover (106a) and the scintillator (104) or between the hermetic covers (106a, 106b).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 12, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Cornelis R. Ronda, Guenter Zeitler, Herbert Schreinemacher
  • Patent number: 8350221
    Abstract: The present invention relates to an apparatus (10) for generating countable pulses (30) from impinging X-ray (12, 14) in an imaging device (16), in particular in a computer tomograph, the apparatus (10) comprising a pre-amplifying element (18) adapted to convert a charge pulse (20) generated by an impinging photon (12, 14) into an electrical signal (22) and a shaping element (26) having a feedback loop (28) and adapted to convert the electrical signal (22) into an electrical pulse (30), wherein a delay circuit (38) is connected to the feedback loop (28) such that a time during which the feedback loop (28) collects charges of the electrical signal (22) is extended in order to improve an amplitude of the electrical pulse (30) at an output (56) of the shaping element (26). The invention also relates to a corresponding imaging device (16) and a corresponding method.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: January 8, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler, Hans Krüger, Walter Ruetten, Oliver Muelhens
  • Patent number: 8241918
    Abstract: A beverage dispensing device including a housing, a tapping device for dispensing a beverage, a beverage container connectable with the tapping device, a freshness indicator device, a data input unit for recording replacement of the beverage container, a temperature sensor for measuring the storage temperature of the beverage, a temperature controller for adjusting the cooling temperature of a chiller, a storage unit for storing the freshness criteria, and a processing unit. The temperature sensor transmits the current beverage storage temperature to the processing unit and the processing unit calculates, depending on a recorded storage temperature period and based on stored freshness criteria, the actual freshness of the beverage, the time left until expiry of the freshness of the beverage and/or the date of expiry of the freshness of the beverage. The processing unit transmits the calculated data to the display.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: August 14, 2012
    Assignee: Koninklijke Philips Electronics N.A.
    Inventors: Guenter Zeitler, Matthias Bertram, Christian Baeumer
  • Patent number: 8237128
    Abstract: The present invention relates to an apparatus (10) for counting X-ray photons (12, 14). The apparatus (10) comprises a sensor (16) adapted to convert a photon (12, 14) into a charge pulse, a processing element (18) adapted to convert the charge pulse (51) into an electrical pulse (53) and a first discriminator (20) adapted to compare the electrical pulse (53) against a first threshold (TH1) and to output an event (55) if the first threshold (TH1) is exceeded. A first counter (22) counts these events (55), unless counting is inhibited by a first gating element (24). The first gating element (24) is activated when the first discriminator (20) outputs the event (55), and it is deactivated, when the processing of a photon (12, 14) is found to be complete or about to be completed by a measurement or by the knowledge about the time that it takes to process a photon (12, 14) in the processing element (18). By activating and deactivating the first counter (22) pile-up events, i.e.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 7, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roger Steadman Booker, Christian Baeumer, Christoph Herrmann, Guenter Zeitler
  • Patent number: 8221664
    Abstract: A hot axial pressing method for sintering a ceramic powder, particularly doped Gd2O2S, comprises the step of placing a first porous body (7), the ceramic powder (9) and a second porous body (7) into a mould shell (5) supported by a support (13, 14). The ceramic powder (9) is located between the porous bodies (7). Gaseous components are evacuated from the ceramic powder (9) up to an ambient pressure of less than 0.8 bar. The porous body (7) and the ceramic powder (9) are heated to a maximum temperature of at least 900° C. and are applied to a pressure up to a maximum pressure of at least 75 Mpa. According to the invention the variation in time of the heating step and the variation in time of the pressure applying step is adjusted to each other such that the mould shell 5 is held by the porous bodies (7) and/or the ceramic powder (9) in a state where the mould shell (5) and the support (13, 14) are disconnected with respect to each other.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 17, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Guenter Zeitler, Herbert Schreinemacher, Cornelis Ronda
  • Patent number: 8168092
    Abstract: The present invention is directed towards an uniaxial pressing and heating apparatus for the production of ceramic materials comprising a heater (4), a mold (5) and a die (3), wherein a mold (5) is arranged inside a heater (4) and the mold (5) receives a die (3) at at least one opening and wherein the die (3) is actuated under pressure into the mold (5), wherein the ratio of the length of the heater (4) and the length of the mold (5) is from ?1.5 to ?4. The invention is further directed towards a process for the production of ceramics and towards a ceramic material.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: May 1, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Guenter Zeitler, Herbert Schreinemacher, Cornelis Reinder Ronda
  • Publication number: 20120085915
    Abstract: The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integr
    Type: Application
    Filed: September 23, 2008
    Publication date: April 12, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Guenter Zeitler, Klaus Juergen Engel, Christoph Herrmann, Roger Steadman Booker
  • Publication number: 20110114887
    Abstract: The invention relates to a Gd2O2S:Nd fluorescent material and the use of Nd3+ as emitter in suitable materials.
    Type: Application
    Filed: July 13, 2009
    Publication date: May 19, 2011
    Applicant: Koninklijke Phillips Electronics N.V.
    Inventors: Cornelis Reinder Ronda, Guenter Zeitler, Herbert Schreinemacher, Norbert Conrads, Detlef Uwe Wiechert
  • Publication number: 20110017918
    Abstract: The invention relates to a radiation detector (100) that is particularly suited for energy resolved single X-ray photon detection in a CT scanner. In a preferred embodiment, the detector (100) comprises an array of scintillator elements (S k) in which incident X-ray photons (X) are converted into bursts of optical photons (hn). Pixels (P k) associated to the scintillator elements (S k) determine the numbers of optical photons they receive within predetermined acquisition intervals. These numbers can then be digitally processed to detect single X-ray photons (X) and to determine their energy. The pixels may particularly be realized by avalanche photodiodes with associated digital electronic circuits for data processing.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 27, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christian Baeumer, Thomas Frach, Christoph Herrmann, Gordian Prescher, Torsten Solf, Roger Steadman Booker, Guenter Zeitler