Patents by Inventor Guido Groeseneken

Guido Groeseneken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7030461
    Abstract: The present invention is related to an Electrostatic Discharge protection device. This may be a semiconductor device such as a CMOS transistor, having a snap-back IV characteristic, in order to withstand ESD pulses. The device of the invention comprises an additional doped region, which influences the internal resistance of the substrate whereupon the device is built. This has a positive effect on the snap-back characteristic, putting the snap back trigger voltage and current at a lower value, compared to prior art devices.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: April 18, 2006
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Vesselin K. Vassilev, Guido Groeseneken
  • Publication number: 20040120086
    Abstract: The present invention is related to an Electrostatic Discharge protection device. This may be a semiconductor device such as a CMOS transistor, having a snap-back IV characteristic, in order to withstand ESD pulses. The device of the invention comprises an additional doped region, which influences the internal resistance of the substrate whereupon the device is built. This has a positive effect on the snap-back characteristic, putting the snap back trigger voltage and current at a lower value, compared to prior art devices.
    Type: Application
    Filed: August 29, 2003
    Publication date: June 24, 2004
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Vesselin K. Vassilev, Guido Groeseneken
  • Patent number: 6707110
    Abstract: Electrostatic discharge protection device comprising a first highly p-doped region with a base contact, a first highly n-doped region with a collector contact, a second highly n-doped region with an emitter contact and located between the first highly p-doped region and the second highly n-doped region, the first highly p-doped region and the second highly n-doped region being applied in a weakly p-doped region which a has a lateral overlap extending towards the first highly n-doped region, the lateral overlap having a width, the first highly n-doped region being applied in a weakly n-doped region, the weakly p-doped region and the weakly n-doped region being applied in a more weakly n-doped region, and a highly n-doped buried layer located underneath the more weakly n-doped region and extending below at least a portion of the weakly n-doped region and at least a portion of the weakly p-doped region.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: March 16, 2004
    Assignees: Interuniversitair Microelektronica Centrum, Alcatel SA
    Inventors: Vincent De Heyn, Guido Groeseneken, Louis Vacaresse, Geert Gallopyn, Hugo Van Hove
  • Patent number: 6570226
    Abstract: The present invention is related to a semiconductor device for electrostatic discharge or overvoltage protection applications, said device comprising means for absorbing an electrostatic discharge pulse or an overvoltage level, said means being triggered at intermediate voltages and said means including a series configuration of at least two trigger components. Said means can further be extended with a third trigger component and possibly further trigger components in said series configuration, the addition of said third and further trigger components extending sequentially the range of the intermediate trigger voltages. Said trigger components can comprise components, preferably diodes, with a specific breakdown voltage, the sum of the breakdown voltages of said diodes defining the specific intermediate trigger voltage of said device.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: May 27, 2003
    Assignees: Interuniversitair Microelektronia Centrum (IMEC), STMicroelectronics NV
    Inventors: Guido Groeseneken, Christian Russ
  • Publication number: 20030006464
    Abstract: Electrostatic discharge protection device comprising a first highly p-doped region with a base contact, a first highly n-doped region with a collector contact, a second highly n-doped region with an emitter contact and located between the first highly p-doped region and the second highly n-doped region, the first highly p-doped region and the second highly n-doped region being applied in a weakly p-doped region which a has a lateral overlap extending towards the first highly n-doped region, the lateral overlap having a width, the first highly n-doped region being applied in a weakly n-doped region, the weakly p-doped region and the weakly n-doped region being applied in a more weakly n-doped region, and a highly n-doped buried layer located underneath the more weakly n-doped region and extending below at least a portion of the weakly n-doped region and at least a portion of the weakly p-doped region.
    Type: Application
    Filed: April 25, 2002
    Publication date: January 9, 2003
    Inventors: Vincent De Heyn, Guido Groeseneken, Louis Vacaresse, Geert Gallopyn, Hugo Van Hove
  • Patent number: 6282124
    Abstract: The present invention is a method for programming SSI cells or an array of said cells. The method achieves very fast programming while consuming only a very small amount of power, which paves the way for new applications such as battery-operated systems, page-mode programming for very high data throughput. The method also allows for the bitline voltage to be increased internally on the chip in order to circumvent the efficiency decrease associated with supply voltage scaling. By exploring the SSI mechanism in the subthreshold regime, an optimum value for the CG voltage is found for which the gate current is no longer maximized, but the energy consumed from the power supply is minimized and the injection efficiency during programming is maximized. The programming of a memory cell in this regime, where the gate current is a very steep function of the CG voltage, is, however, still achieved in a few microseconds while consuming only a very small cell current in the range of nanoamperes.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: August 28, 2001
    Assignee: Interuniversitair Microelektronica Centrum (IMEC, vzw)
    Inventors: Jan F. Van Houdt, Luc Haspeslagh, Ludo Deferm, Guido Groeseneken, Herman Maes
  • Patent number: 6243293
    Abstract: A contacted array of programmable and erasable semiconductor memory devices. Each of the memory devices has a split gate structure, including a source region, a drain region, a channel extending between the source and drain regions, a floating gate extending over a portion of the channel with a first dielectric layer therebetween, a control gate extending over a portion of the floating gate through a second dielectric layer, and a program gate extending above the floating gate with a dielectric layer therebetween. The program gate forms a capacitor with the floating gate with a coupling ratio sufficient to couple a voltage at least as high as the drain voltage to the floating gate, thereby establishing a high voltage at a point in the channel between the control gate and the floating gate and ensuring a high hot-electron injection towards the floating gate.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: June 5, 2001
    Assignee: Interuniversitair Micro-Elektronica Centrum
    Inventors: Jan F. Van Houdt, Guido Groeseneken, Herman Maes
  • Patent number: 6115285
    Abstract: The present invention discloses a memory device having memory cells capable of storing three or more charge leves in said memory cell. The cells can be programmed according to a method including a single pulse charge level injection mechanism in said cells. The method does not require a program verify scheme, permits increased speed during programming, and reduces the area necessary for storing one bit of information. The memory device of the present invention further includes information write or storage or programmation means, information erase means and information read-out means. Another object of the present invention is to provide a method and a circuit that implements said method for determining the charge level of a memory cell having t possible levels (t being larger than or equal to three).
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: September 5, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Donato Montanari, Jan Van Houdt, Guido Groeseneken, Herman Maes
  • Patent number: 6044015
    Abstract: The present invention is a method for programming SSI cells or an array of said cells. The method achieves very fast programming while consuming only a very small amount of power, which paves the way for new applications such as battery-operated systems, page-mode programming for very high data throughput. The method also allows for the bitline voltage to be increased internally on the chip in order to circumvent the efficiency decrease associated with supply voltage scaling. By exploring the SSI mechanism in the subthreshold regime, an optimum value for the CG voltage is found for which the gate current is no longer maximized, but the energy consumed from the power supply is minimized and the injection efficiency during programming is maximized. The programming of a memory cell in this regime, where the gate current is a very steep function of the CG voltage, is, however, still achieved in a few microseconds while consuming only a very small cell current in the range of nanoamperes.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: March 28, 2000
    Assignee: Imec vzw
    Inventors: Jan F. Van Houdt, Luc Haspeslagh, Ludo Deferm, Guido Groeseneken, Herman Maes
  • Patent number: 6009013
    Abstract: The present invention relates to the field of electrically erasable and programmable nonvolatile semiconductor memories (EEPROM) and, in particular, to contactless array configurations that are used for the practical and efficient implementation of a particular type of memory transistor. Such a memory transistor allows fast 5V-only programming by the use of an enhanced source-side injection mechanism. This concept requires a program gate in the field oxide region which serves to capacitively couple a high voltage to the floating gates. Thus, a very high injection current is established during programming. This additional program gate, however, increases the cell area considerably. The present disclosure shows a contactless 5V-only Flash EEPROM array configuration that relies on shared program lines in order to minimize the area overhead that is caused by this program gate. Furthermore, a memory array with shared wordlines is presented which further enhances the density achievable.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: December 28, 1999
    Assignee: Interuniversitair Micro-Elektronica Centrum vzw
    Inventors: Jan F. Van Houdt, Guido Groeseneken, Herman Maes
  • Patent number: 5969991
    Abstract: The present invention is a method for programming SSI cells or an array of said cells. The method achieves very fast programming while consuming only a very small amount of power, which paves the way for new applications such as battery-operated systems, page-mode programming for very high data throughput. The method also allows for the bitline voltage to be increased internally on the chip in order to circumvent the efficiency decrease associated with supply voltage scaling. By exploring the SSI mechanism in the subthreshold regime, an optimum value for the CG voltage is found for which the gate current is no longer maximized, but the energy consumed from the power supply is minimized and the injection efficiency during programming is maximized. The programming of a memory cell in this regime, where the gate current is a very steep function of the CG voltage, is, however, still achieved in a few microseconds while consuming only a very small cell current in the range of nanoamperes.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: October 19, 1999
    Assignee: Interuniversitair Micro-Elektronica Centrum VZW
    Inventors: Jan F. Van Houdt, Luc Haspeslagh, Ludo Deferm, Guido Groeseneken, Herman Maes
  • Patent number: 5841697
    Abstract: The present invention relates to the field of electrically erasable and programmable nonvolatile semiconductor memories (EEPROM) and, in particular, to contactless array configurations that are used for the practical and efficient implementation of a particular type of memory transistor. Such a memory transistor allows fast 5 V-only programming by the use of an enhanced source-side injection mechanism. This concept requires a program gate in the field oxide region which serves to capacitively couple a high voltage to the floating gates. Thus, a very high injection current is established during programming. This additional program gate, however, increases the cell area considerably. The present disclosure shows a contactless 5 V-only Flash EEPROM array configuration that relies on shared program lines in order to minimize the area overhead that is caused by this program gate. Furthermore, a memory array with shared wordlines is presented which further enhances the density achievable.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: November 24, 1998
    Assignee: Interuniversitair Micro-Elektronica Centrum
    Inventors: Jan F. Van Houdt, Guido Groeseneken, Herman Maes
  • Patent number: 5583811
    Abstract: A programmable EEPROM cell structure consisting in a split-gate structure in series with a coupling capacitor between the floating gate and an additional program gate in order to provide enhanced injection efficiency. The electron injection is controlled by a control gate at the source side. The area of the coupling capacitor is selected with a substantial coupling factor to a high voltage onto the floating gate during programming so as to produce hot-electron injection at the split point in the channel region between the control gate and the floating gate. Submicrosecond programming at a 5 V drain voltage can thereby be achieved.
    Type: Grant
    Filed: July 13, 1994
    Date of Patent: December 10, 1996
    Assignee: Interuniversitair Micro-Elektronica Centrum vzw
    Inventors: Jan Van Houdt, Guido Groeseneken, Herman Maes
  • Patent number: 5583810
    Abstract: A programmable EEPROM cell structure consisting in a split-gate structure in series with a coupling capacitor between the floating gate and an additional program gate in order to provide enhanced injection efficiency. The electron injection is controlled by a control gate at the source side. The area of the coupling capacitor is selected with a substantial coupling factor to a high voltage onto the floating gate during programming so as to produce hot-electron injection at the split point in the channel region between the control gate and the floating gate. Submicrosecond programming at a 5 V drain voltage can thereby be achieved.
    Type: Grant
    Filed: June 21, 1993
    Date of Patent: December 10, 1996
    Assignee: Interuniversitair Micro-Elektronica Centrum vzw
    Inventors: Jan Van Houdt, Guido Groeseneken, Herman Maes