Patents by Inventor Guido Hennig

Guido Hennig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913078
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: February 27, 2024
    Assignee: MYRIAD INTERNATIONAL GMBH
    Inventors: Mareike Dartmann, Inke Sabine Feder, Mathias Gehrmann, Guido Hennig, Karsten Weber, Christian Von Torne, Ralf Kronenwett, Christoph Petry
  • Publication number: 20220246308
    Abstract: Disclosed herein is a combined multi-modality biomarker method for identification and treatment of a disease comprising performing quantitative and/or semi-quantitative molecular imaging on a patient; where the semi-quantitative imaging includes a cut-off; measuring a first plurality of parameters from the quantitative and/or semi-quantitative molecular imaging; simultaneously or sequentially performing a liquid biopsy on the patient; measuring a second plurality of quantitative and/or semi-quantitative molecular parameters from the liquid biopsy; developing an algorithm that combines one or more of the first plurality of parameters and one or more of the second plurality of parameters; where the algorithm is operative to identify a disease and/or predict a course of treatment and/or monitoring the patient; and treating the patient with the course of treatment generated by the algorithm.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Guido Hennig, Carl Freiherr Von Gall
  • Patent number: 11335464
    Abstract: Disclosed herein is a combined multi-modality biomarker method for identification and treatment of a disease comprising performing quantitative and/or semi-quantitative molecular imaging on a patient; where the semi-quantitative imaging includes a cut-off; measuring a first plurality of parameters from the quantitative and/or semi-quantitative molecular imaging; simultaneously or sequentially performing a liquid biopsy on the patient; measuring a second plurality of quantitative and/or semi-quantitative molecular parameters from the liquid biopsy; developing an algorithm that combines one or more of the first plurality of parameters and one or more of the second plurality of parameters; where the algorithm is operative to identify a disease and/or predict a course of treatment and/or monitoring the patient; and treating the patient with the course of treatment generated by the algorithm.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: May 17, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Guido Hennig, Carl Freiherr Von Gall
  • Publication number: 20220090166
    Abstract: Sample preparation methods enabling selective and enriched extraction of small nucleic acid fragments from biological samples. The methods include adding lysed sample, first magnetic particles, and first binding buffer in a first vessel and incubating to bind first nucleic acid portion of lengths ?500 bp to the first magnetic particles and leave a first supernatant. First supernatant is transferred to a second vessel with second magnetic particles and a second binding buffer and then incubated to bind a second nucleic acid portion having lengths <500 bp to the second magnetic particles and leave a second supernatant. Second magnetic particles with bound second nucleic acid portion are separated and washed. An elution buffer is added to the second magnetic particles and incubated to release the second nucleic acid portion (<500 bp) and form a final eluate. Final eluate can be processed such as by using RT-PCR and PCR.
    Type: Application
    Filed: March 3, 2020
    Publication date: March 24, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: Yiwei Huang, Guido Hennig
  • Patent number: 11046950
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Publication number: 20210123107
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 29, 2021
    Applicant: MYRIAD INTERNATIONAL GMBH
    Inventors: Mareike DARTMANN, Inke Sabine FEDER, Mathias GEHRMANN, Guido HENNIG, Karsten WEBER, Christian VON TORNE, Ralf KRONENWETT, Christoph PETRY
  • Patent number: 10851427
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: December 1, 2020
    Assignee: MYRIAD INTERNATIONAL GMBH
    Inventors: Mareike Dartmann, Inke Sabine Feder, Mathias Gehrmann, Guido Hennig, Karsten Weber, Christian Von Törne, Ralf Kronenwett, Christoph Petry
  • Publication number: 20200224281
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 16, 2020
    Applicant: MYRIAD INTERNATIONAL GMBH
    Inventors: Mareike DARTMANN, Inke Sabine FEDER, Mathias GEHRMANN, Guido HENNIG, Karsten WEBER, Christian VON TÖRNE, Ralf KRONENWETT, Christoph PETRY
  • Patent number: 10577661
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: March 3, 2020
    Assignee: MYRIAD INTERNATIONAL GMBH
    Inventors: Mareike Dartmann, Inke Sabine Feder, Mathias Gehrmann, Guido Hennig, Karsten Weber, Christian Von Törne, Ralf Kronenwett, Christoph Petry
  • Patent number: 10385331
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: August 20, 2019
    Assignee: Siemens Healthcare Diagnostics GmbH
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Publication number: 20190241885
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: Siemens Healthcare Diagnostics GmbH
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Publication number: 20190221314
    Abstract: Disclosed herein is a combined multi-modality biomarker method for identification and treatment of a disease comprising performing quantitative and/or semi-quantitative molecular imaging on a patient; where the semi-quantitative imaging includes a cut-off; measuring a first plurality of parameters from the quantitative and/or semi-quantitative molecular imaging; simultaneously or sequentially performing a liquid biopsy on the patient; measuring a second plurality of quantitative and/or semi-quantitative molecular parameters from the liquid biopsy; developing an algorithm that combines one or more of the first plurality of parameters and one or more of the second plurality of parameters; where the algorithm is operative to identify a disease and/or predict a course of treatment and/or monitoring the patient; and treating the patient with the course of treatment generated by the algorithm.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Guido Hennig, Carl Freiherr Von Gall
  • Patent number: 10252305
    Abstract: A flat product made of a metal material has been provided with deterministic surface texture which has a plurality of depressions which have a depth in the range of from 2 to 14 ?m, wherein the depressions are designed to be I-shaped, H-shaped, cross-shaped, C-shaped or X-shaped, and wherein the surface texture has a peak count RPc in the range of from 45 to 180 1/cm, an arithmetic mean roughness Ra in the range of from 0.3 to 3.6 ?m, and an arithmetic mean waviness Wsa in the range of from 0.05 to 0.65 ?m.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 9, 2019
    Assignees: Daetwyler Graphics AG, ThyssenKrupp Steel Europe AG
    Inventors: Karl-Heinz Kopplin, Martin Koch, Stefan Wischmann, Friedhelm Macherey, Folkert Schulze-Kraasch, Jörg Wahser, Guido Hennig, Markus Resing
  • Publication number: 20170159043
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Applicant: Siemens Healthcare Diagnostics GmbH
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Patent number: 9617534
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: April 11, 2017
    Assignee: Siemens Healthcare Diagnostics GmbH
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Publication number: 20170067118
    Abstract: The present invention relates to methods, kits and systems for the prognosis of the disease outcome of breast cancer, said method comprising: (a) determining in a tumor sample from said patient the RNA expression levels of at least 2 of the following 9 genes: UBE2C, BIRC5, RACGAP1, DHCR7, STC2, AZGP1, RBBP8, IL6ST, and MGP (b) mathematically combining expression level values for the genes of the said set which values were determined in the tumor sample to yield a combined score, wherein said combined score is indicative of a prognosis of said patient; and kits and systems for performing said method.
    Type: Application
    Filed: August 11, 2016
    Publication date: March 9, 2017
    Applicant: Sividon Diagnostics GmbH
    Inventors: Mareike Dartmann, Inke Sabine Feder, Mathias Gehrmann, Guido Hennig, Karsten Weber, Christian Von Törne, Ralf Kronenwett, Christoph Petry
  • Patent number: 9416399
    Abstract: The invention relates to a method for purification of nucleic acids, to a kit for performing the method according to the invention and to a new application of magnetic particles for purification of a biological sample. The method according to the invention comprises the following steps: a) accommodating of the sample in a first sample vessel in an aqueous solution and lysing of the sample under non-chaotropic conditions; suspending of first magnetic particles in the solution and inserting of the first sample vessel in a sample vessel holder, wherein the sample vessel is inserted in the annular interior space of a ring magnet associated with the sample vessel holder; separating of the solution from the magnetic particles; and isolating of the nucleic acids from the solution.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: August 16, 2016
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Heike Euting, Guido Hennig, Alexandre Izmailov
  • Publication number: 20150209848
    Abstract: A flat product made of a metal material has been provided with deterministic surface texture which has a plurality of depressions which have a depth in the range of from 2 to 14 ?m, wherein the depressions are designed to be I-shaped, H-shaped, cross-shaped, C-shaped or X-shaped, and wherein the surface texture has a peak count RPc in the range of from 45 to 180 l/cm, an arithmetic mean roughness Ra in the range of from 0.3 to 3.6 ?m, and an arithmetic mean waviness Wsa in the range of from 0.05 to 0.65 ?m.
    Type: Application
    Filed: September 9, 2013
    Publication date: July 30, 2015
    Inventors: Karl-Heinz Kopplin, Martin Koch, Stefan Wischmann, Friedhelm Macherey, Folkert Schulze-Kraasch, Jörg Wahser, Guido Hennig, Markus Resing
  • Publication number: 20150191718
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Application
    Filed: February 19, 2015
    Publication date: July 9, 2015
    Applicant: SIEMENS HEALTHCARE DIAGNOSTICS GMBH
    Inventors: Guido Hennig, Karlheinz Hildenbrand
  • Patent number: 8846897
    Abstract: The invention relates to a method for filtering nucleic acids, to a kit for carrying out the method according to the invention and to a novel use of magnetic particles for filtering a biological sample. The method according to the invention comprises the following steps: a) the sample is held in an aqueous solution; b) lysing of the sample; c) separation of cellular debris; and d) the nucleic acids are isolated from the solution, steps (a) to (c) taking place under non-chaotropic conditions.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 30, 2014
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Heike Euting, Guido Hennig, Kerstin Bohmann