Patents by Inventor Guido Wasserschaff

Guido Wasserschaff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220339598
    Abstract: The invention relates to a device, stacked plate reactor and to a method for investigating chemical processes to be carried out simultaneously or almost at the same time on a large number of functional element variations of the process parameters.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 27, 2022
    Inventors: Andreas Mueller, III, Michael Dejmek, Oliver Puettmann, Alexander Higelin, Fabian Schneider, Guido Wasserschaff
  • Patent number: 11400437
    Abstract: The present invention is directed to a shaped catalyst body for preparing ethylene oxide, which comprises at least silver, cesium and rhenium applied to an alumina support, wherein the alumina support comprises Si, Ca, and Mg in a defined amount. Furthermore, the present invention is directed to a process for preparing the catalyst according to the present invention and process for preparing ethylene oxide by gas-phase oxidation of ethylene by means of oxygen in the presence of a shaped catalyst body according to the present invention.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 2, 2022
    Assignee: BASF SE
    Inventors: Andrey Karpov, Michael Kraemer, Marco Bosch, Christian Bartosch, Juergen Zuehlke, Carlos Lizandara Pueyo, Guido Wasserschaff
  • Publication number: 20210283583
    Abstract: The present invention is directed to a shaped catalyst body for preparing ethylene oxide, which comprises at least silver, cesium and rhenium applied to an alumina support, wherein the alumina support comprises Si, Ca, and Mg in a defined amount. Furthermore, the present invention is directed to a process for preparing the catalyst according to the present invention and process for preparing ethylene oxide by gas-phase oxidation of ethylene by means of oxygen in the presence of a shaped catalyst body according to the present invention.
    Type: Application
    Filed: August 8, 2017
    Publication date: September 16, 2021
    Inventors: ANDREY KARPOV, Michael KRAEMER, Marco BOSCH, Christian BARTOSCH, Juergen ZUEHLKE, Carlos LIZANDARA PUEYO, Guido WASSERSCHAFF
  • Patent number: 10987660
    Abstract: A hexaaluminate-containing catalyst containing a hexaaluminate-containing phase which includes cobalt and at least one further element of La, Ba or Sr. The catalyst contains 2 to 15 mol % Co, 70 to 90 mol % Al, and 2 to 25 mol % of the further element of La, Ba or Sr. In addition to the hexaaluminate-containing phase, the catalyst can include 0 to 50% by weight of an oxidic secondary phase. The process of preparing the catalyst includes contacting an aluminum oxide source with cobalt species and at least with an element from the group of La, Ba and Sr. The molded and dried material is preferably calcined at a temperature greater than or equal to 800° C. In the reforming process for reacting hydrocarbons in the presence of CO2, the catalyst is used at a process temperature of greater than 700° C., with the process pressure being greater than 5 bar.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: April 27, 2021
    Inventors: Stephan Schunk, Andrian Milanov, Andreas Strasser, Guido Wasserschaff, Thomas Roussiere
  • Publication number: 20170354956
    Abstract: The invention relates to a process for preparing aluminates of the general formula (I) A1BxAl12-xO19-y where A is at least one element from the group consisting of Sr, Ba and La, B is at least one element from the group consisting of Mn, Fe, Co, Ni, Rh, Cu and Zn, x=0.05-1.0, y is a value determined by the oxidation states of the other elements, which comprises the steps (i) provision of one or more solutions or suspensions comprising precursor compounds of the elements A and B and also a precursor compound of aluminum in a solvent, (ii) conversion of the solutions or suspensions or the solutions into an aerosol, (iii) introduction of the aerosol into a directly or indirectly heated pyrolysis zone, (iv) carrying out of the pyrolysis and (v) separation of the resulting particles comprising hexaaluminate of the general formula (I) from the pyrolysis gas.
    Type: Application
    Filed: October 23, 2015
    Publication date: December 14, 2017
    Applicant: BASF SE
    Inventors: Rene KOENIG, Wieland KOBAN, Andrian MILANOV, Ekkehard SCHWAB, Stephan A SCHUNK, Carlos LIZANDARA, Guido WASSERSCHAFF
  • Patent number: 9834440
    Abstract: The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400° C. and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: December 5, 2017
    Assignee: BASF SE
    Inventors: Matthias Kern, Friedrich Glenk, Dirk Klingler, Andreas Bode, Grigorios Kolios, Stephan Schunk, Guido Wasserschaff, Jens Bernnat, Bernd Zoels, Sabine Schmidt, Rene Koenig
  • Patent number: 9783415
    Abstract: The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400° C. and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 10, 2017
    Assignee: BASF SE
    Inventors: Matthias Kern, Friedrich Glenk, Dirk Klingler, Andreas Bode, Grigorios Kolios, Stephan Schunk, Guido Wasserschaff, Jens Bernnat, Bernd Zoels, Sabine Schmidt, Rene Koenig
  • Publication number: 20170080407
    Abstract: The invention relates to a process for producing a catalyst for the high-temperature processes (i) carbon dioxide hydrogenation, (ii) combined high-temperature carbon dioxide hydrogenation and reforming and/or (iii) reforming of hydrocarbon-comprising compounds and/or carbon dioxide and the use of the catalyst of the invention in the reforming and/or hydrogenation of hydrocarbons, preferably methane, and/or of carbon dioxide. To produce the catalyst, an aluminum source, which preferably comprises a water-soluble precursor source, is brought into contact with an yttrium-comprising metal salt solution, dried and calcined. The metal salt solution comprises, in addition to the yttrium species, at least one element from the group consisting of cobalt, copper, nickel, iron and zinc.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 23, 2017
    Applicant: BASF SE
    Inventors: Stephan A. SCHUNK, Ekkehard SCHWAB, Andrian MILANOV, Guido WASSERSCHAFF, Thomas ROUSSIERE, Andreas STRASSER, Carlos LIZANDARA, Nussloch MUELLER
  • Patent number: 9566571
    Abstract: A hexaaluminate-containing catalyst for reforming hydrocarbons. The catalyst consists of a hexaaluminate-containing phase, which consists of cobalt and at least one further element from the group consisting of La, Ba, and Sr, and an oxidic secondary phase. To prepare the catalyst, an aluminum source is brought into contact with a cobalt-containing metal salt solution, dried, and calcined. The metal salt solution additionally contains the at least one further element. The reforming of methane and carbon dioxide is great economic interest since synthesis gas produced during this process can form a raw material for the preparation of basic chemicals. In addition, the use of carbon dioxide as a starting material is important in the chemical syntheses in order to bind carbon dioxide obtained as waste product in numerous processes by a chemical route and thereby avoid emission into the atmosphere.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 14, 2017
    Assignee: BASF SE
    Inventors: Stephan Schunk, Andrian Milanov, Andreas Strasser, Guido Wasserschaff, Thomas Roussiere
  • Publication number: 20160311684
    Abstract: A method of reforming mixtures of hydrocarbons, preferably methane, and carbon dioxide, wherein the method comprises at least two stages. In a first stage, a reactant gas is contacted with a precious metal catalyst and converted to a first product gas (also referred to hereinafter as product gas 1). In a second stage, the first product gas obtained in the first stage is contacted with a non-precious metal catalyst and converted to a second product gas (also referred to hereinafter as product gas 2). The process can also include adding gases to the product gas 1 obtained in the first stage. The practice of the process can minimize the formation of coke on the catalyst in an efficient manner. The combination of a first stage with a precious metal catalyst and at least one second stage with non-precious metal catalyst allows considerable amounts of costly precious metals to be saved.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 27, 2016
    Inventors: Andrian MILANOV, Ekkehard SCHWAB, Heiko URTEL, Stephan SCHUNK, Guido WASSERSCHAFF
  • Patent number: 9475037
    Abstract: The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO3, SrAl2O4 and BaAl2O4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ?5 m2/g, preferably ?10 m2/g. The molar nickel content of the catalyst is ?3 mol %, preferably ?2.5 mol % and more preferably ?2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 25, 2016
    Assignee: BASF SE
    Inventors: Stephan Schunk, Ekkehard Schwab, Andrian Milanov, Guido Wasserschaff, Thomas Roussiere, Gerhard Cox, Bernd Hinrichsen, Ulrich Floerchinger
  • Publication number: 20160207031
    Abstract: The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 21, 2016
    Applicant: BASF SE
    Inventors: Ekkehard SCHWAB, Andrian MILANOV, Stephan SCHUNK, Thomas ROUSSIERE, Guido WASSERSCHAFF, Andreas STRASSER
  • Patent number: 9259712
    Abstract: The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 16, 2016
    Assignee: BASF SE
    Inventors: Ekkehard Schwab, Andrian Milanov, Stephan Schunk, Thomas Roussiere, Guido Wasserschaff, Andreas Strasser
  • Publication number: 20160008791
    Abstract: The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO3, SrAl2O4 and BaAl2O4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ?5 m2/g, preferably ?10 m2/g. The molar nickel content of the catalyst is ?3 mol %, preferably ?2.5 mol % and more preferably ?2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 14, 2016
    Applicant: BASF SE
    Inventors: Stephan SCHUNK, Ekkehard SCHWAB, Andrian MILANOV, Guido WASSERSCHAFF, Thomas ROUSSIERE, Gerhard COX, Bernd HINRICHSEN, Ulrich FLOERCHINGER
  • Publication number: 20150336795
    Abstract: The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400° C. and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).
    Type: Application
    Filed: December 17, 2013
    Publication date: November 26, 2015
    Applicant: BASF SE
    Inventors: Matthias KERN, Friedrich GLENK, Dirk KLINGLER, Andreas BODE, Grigorios KOLIOS, Stephan SCHUNK, Guido WASSERSCHAFF, Jens BERNNAT, Bernd ZOELS, Sabine SCHMIDT, Rene KOENIG
  • Patent number: 8916491
    Abstract: The present invention relates to a process for producing a catalyst for carrying out methanation reactions. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds brought into contact with one another are intimately mixed, thermally treated so that the metal salt fraction melts and subsequently subjected to a low-temperature calcination step and a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises/contains nickel nitrate hexahydrate. The hydrotalcite-comprising starting material is preferably hydrotalcite or a hydrotalcite-like compound as starting material, and the hydrotalcite-comprising starting material preferably comprises magnesium and aluminum as metal species.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: December 23, 2014
    Assignee: BASF SE
    Inventors: Claudia Querner, Andrian Milanov, Stephan Schunk, Andreas Strasser, Guido Wasserschaff, Thomas Roussiere
  • Publication number: 20140191449
    Abstract: A hexaaluminate-containing catalyst containing a hexaaluminate-containing phase which includes cobalt and at least one further element of La, Ba or Sr. The catalyst contains 2 to 15 mol % Co, 70 to 90 mol % Al, and 2 to 25 mol % of the further element of La, Ba or Sr. In addition to the hexaaluminate-containing phase, the catalyst can include 0 to 50% by weight of an oxidic secondary phase. The process of preparing the catalyst includes contacting an aluminum oxide source with cobalt species and at least with an element from the group of La, Ba and Sr. The molded and dried material is preferably calcined at a temperature greater than or equal to 800° C. In the reforming process for reacting hydrocarbons in the presence of CO2, the catalyst is used at a process temperature of greater than 700° C., with the process pressure being greater than 5 bar.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 10, 2014
    Applicant: BASF SE
    Inventors: Stephan SCHUNK, Andrian MILANOV, Andreas STRASSER, Guido WASSERSCHAFF, Thomas ROUSSIERE
  • Publication number: 20140001407
    Abstract: The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrian MILANOV, Ekkehard Schwab, Stephan Schunk, Guido Wasserschaff
  • Publication number: 20130210619
    Abstract: A hexaaluminate-containing catalyst for reforming hydrocarbons. The catalyst consists of a hexaaluminate-containing phase, which consists of cobalt and at least one further element from the group consisting of La, Ba, and Sr, and an oxidic secondary phase. To prepare the catalyst, an aluminum source is brought into contact with a cobalt-containing metal salt solution, dried, and calcined. The metal salt solution additionally contains the at least one further element. The reforming of methane and carbon dioxide is great economic interest since synthesis gas produced during this process can form a raw material for the preparation of basic chemicals. In addition, the use of carbon dioxide as a starting material is important in the chemical syntheses in order to bind carbon dioxide obtained as waste product in numerous processes by a chemical route and thereby avoid emission into the atmosphere.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Inventors: Stephan SCHUNK, Andrian MILANOV, Andreas STRASSER, Guido WASSERSCHAFF, Thomas ROUSSIERE
  • Publication number: 20130116116
    Abstract: The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Inventors: Ekkehard SCHWAB, Andrian Milanov, Stephan Schunk, Thomas Roussiere, Guido Wasserschaff, Andreas Strasser