Patents by Inventor Guilian Gao

Guilian Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240282747
    Abstract: Devices and techniques include process steps for preparing various microelectronic components for bonding, such as for direct bonding without adhesive. The processes include providing a first bonding surface on a first surface of the microelectronic components, bonding a handle to the prepared first bonding surface, and processing a second surface of the microelectronic components while the microelectronic components are gripped at the handle. In some embodiments, the processes include removing the handle from the first bonding surface, and directly bonding the microelectronic components at the first bonding surface to other microelectronic components.
    Type: Application
    Filed: May 2, 2024
    Publication date: August 22, 2024
    Inventors: Chandrasekhar Mandalapu, Gaius Gillman Fountain, JR., Guilian Gao
  • Patent number: 12068278
    Abstract: Representative implementations of techniques and methods include processing singulated dies in preparation for bonding. A plurality of semiconductor die components may be singulated from a wafer component, the semiconductor die components each having a substantially planar surface. Particles and shards of material may be removed from edges of the plurality of semiconductor die component. Additionally, one or more of the plurality of semiconductor die components may be bonded to a prepared bonding surface, via the substantially planar surface.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: August 20, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Guilian Gao, Laura Wills Mirkarimi, Gaius Gillman Fountain, Jr.
  • Publication number: 20240249998
    Abstract: In some implementations, a device package may include a package substrate, a package cover disposed on the package substrate, and an integrated cooling assembly disposed between the package substrate and the package cover. The integrated cooling assembly may include a semiconductor device and a cold plate having a first side attached to the semiconductor device and a second side opposite the first side. An adhesive layer may be disposed between the package cover and the second side of the cold plate, and one or more surfaces of second side of the cold plate may be spaced apart from the package cover to define a coolant channel therebetween. The adhesive layer may seal the package cover to the cold plate around a perimeter of the coolant channel.
    Type: Application
    Filed: December 22, 2023
    Publication date: July 25, 2024
    Inventors: Guilian Gao, Belgacem Haba, Laura Mirkarimi
  • Patent number: 12046571
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Grant
    Filed: November 23, 2022
    Date of Patent: July 23, 2024
    Assignee: Adeia Semiconductor Bonding Technologies Inc.
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Liang Wang, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20240243103
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Application
    Filed: November 17, 2023
    Publication date: July 18, 2024
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Jeremy Alfred Theil, Belgacem Haba, Rajesh Katkar
  • Publication number: 20240222319
    Abstract: A method of repairing a bonded structure is disclosed. The method can include debonding from a carrier a first semiconductor element that is bonded to a bonding site of the carrier, cleaning the bonding site of the carrier; and bonding a second semiconductor element to the bonding site of the carrier. The bonding can also include directly bonding the second semiconductor element and the carrier. The method can further include reducing the dielectric bond energy via a surface modification between the first semiconductor element and the carrier. Debonding the bonded structure can include delivering a fluid from one or more nozzles to a bonding interface between the first semiconductor element and the carrier to reduce the bond energy. A temperature adjustment pad can also be included to debond the bonded structure.
    Type: Application
    Filed: December 19, 2023
    Publication date: July 4, 2024
    Inventors: Guilian GAO, Laura Wills MIRKARIMI, Gabriel Z. GUEVARA, Thomas WORKMAN, Dominik SUWITO
  • Publication number: 20240222239
    Abstract: A semiconductor element having an interconnect bonding layer with functional and non-functional metal contact pads therein surrounded by a dielectric material is disclosed. The functional metal contact pads are exposed to the bonding surface and are connected to a buried metal layer. The non-functional metal contact pads are distributed in the regions having no or less functional metal contact pads, and are exposed to the bonding surface and terminated at a partial depth of the functional metal pads. Each of the functional and non-functional metal contact pads is formed involving a one etching step single damascene process.
    Type: Application
    Filed: December 22, 2023
    Publication date: July 4, 2024
    Inventors: Guilian Gao, Gaius Gillman Fountain, JR.
  • Publication number: 20240213105
    Abstract: Mitigating surface damage of probe pads in preparation for direct bonding of a substrate is provided. Methods and layer structures prepare a semiconductor substrate for direct bonding processes by restoring a flat direct-bonding surface after disruption of probe pad surfaces during test probing. An example method fills a sequence of metals and oxides over the disrupted probe pad surfaces and builds out a dielectric surface and interconnects for hybrid bonding. The interconnects may be connected to the probe pads, and/or to other electrical contacts of the substrate. A layer structure is described for increasing the yield and reliability of the resulting direct bonding process. Another example process builds the probe pads on a next-to-last metallization layer and then applies a direct bonding dielectric layer and damascene process without increasing the count of mask layers.
    Type: Application
    Filed: March 8, 2024
    Publication date: June 27, 2024
    Inventors: Guilian Gao, Laura Wills Mirkarimi, Gaius Gillman Fountain, JR.
  • Publication number: 20240213191
    Abstract: Disclosed is an element including a conductive feature at a contact surface of the element and a nonconductive region at the contact surface in which the conductive feature is at least partially embedded. The contact feature includes a conductive material and an amount of impurities at a grain boundary of the conductive material. The impurities have a non-alloying material that does not form an alloy with the conductive material at a bonding temperature.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 27, 2024
    Inventors: Jeremy Alfred Theil, Cyprian Emeka Uzoh, Guilian Gao
  • Publication number: 20240203948
    Abstract: Direct bonded stack structures for increased reliability and improved yields in microelectronics are provided. Structural features and stack configurations are provided for memory modules and 3DICs to reduce defects in vertically stacked dies. Example processes alleviate warpage stresses between a thicker top die and direct bonded dies beneath it, for example. An etched surface on the top die may relieve warpage stresses. An example stack may include a compliant layer between dies. Another stack configuration replaces the top die with a layer of molding material to circumvent warpage stresses. An array of cavities on a bonding surface can alleviate stress forces. One or more stress balancing layers may also be created on a side of the top die or between other dies to alleviate or counter warpage. Rounding of edges can prevent stresses and pressure forces from being destructively transmitted through die and substrate layers. These measures may be applied together or in combinations in a single package.
    Type: Application
    Filed: February 27, 2024
    Publication date: June 20, 2024
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Thomas Workman, Guilian Gao, Gaius Gillman Fountain, JR., Laura Wills Mirkarimi, Belgacem Haba, Gabriel Z. Guevara, Joy Watanabe
  • Publication number: 20240194625
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Application
    Filed: February 20, 2024
    Publication date: June 13, 2024
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, JR., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Patent number: 12009338
    Abstract: A method of direct hybrid bonding first and second semiconductor elements of differential thickness is disclosed. The method can include patterning a plurality of first contact features on the first semiconductor element. The method can include second a plurality of second contact features on the second semiconductor element corresponding to the first contact features for direct hybrid bonding. The method can include applying a lithographic magnification correction factor to one of the first patterning and second patterning without applying the lithographic magnification correction factor to the other of the first patterning and the second patterning. In various embodiments, a differential expansion compensation structure can be disposed on at least one of the first and the second semiconductor elements.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: June 11, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Laura Wills Mirkarimi, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh
  • Publication number: 20240186284
    Abstract: Devices and techniques include process steps for preparing various microelectronic components for bonding, such as for direct bonding without adhesive. The processes include providing a first bonding surface on a first surface of the microelectronic components, bonding a handle to the prepared first bonding surface, and processing a second surface of the microelectronic components while the microelectronic components are gripped at the handle. In some embodiments, the processes include removing the handle from the first bonding surface, and directly bonding the microelectronic components at the first bonding surface to other microelectronic components.
    Type: Application
    Filed: September 11, 2023
    Publication date: June 6, 2024
    Inventors: Chandrasekhar Mandalapu, Gaius Gillman Fountain, JR., Guilian Gao
  • Patent number: 11978681
    Abstract: Mitigating surface damage of probe pads in preparation for direct bonding of a substrate is provided. Methods and layer structures prepare a semiconductor substrate for direct bonding processes by restoring a flat direct-bonding surface after disruption of probe pad surfaces during test probing. An example method fills a sequence of metals and oxides over the disrupted probe pad surfaces and builds out a dielectric surface and interconnects for hybrid bonding. The interconnects may be connected to the probe pads, and/or to other electrical contacts of the substrate. A layer structure is described for increasing the yield and reliability of the resulting direct bonding process. Another example process builds the probe pads on a next-to-last metallization layer and then applies a direct bonding dielectric layer and damascene process without increasing the count of mask layers.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: May 7, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Laura Wills Mirkarimi, Gaius Gillman Fountain, Jr.
  • Patent number: 11967575
    Abstract: Structures and techniques provide bond enhancement in microelectronics by trapping contaminants and byproducts during bonding processes, and arresting cracks. Example bonding surfaces are provided with recesses, sinks, traps, or cavities to capture small particles and gaseous byproducts of bonding that would otherwise create detrimental voids between microscale surfaces being joined, and to arrest cracks. Such random voids would compromise bond integrity and electrical conductivity of interconnects being bonded. In example systems, a predesigned recess space or predesigned pattern of recesses placed in the bonding interface captures particles and gases, reducing the formation of random voids, thereby improving and protecting the bond as it forms. The recess space or pattern of recesses may be placed where particles collect on the bonding surface, through example methods of determining where mobilized particles move during bond wave propagation.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: April 23, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Javier A. DeLaCruz, Shaowu Huang, Liang Wang, Gaius Gillman Fountain, Jr., Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20240118492
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Application
    Filed: November 14, 2023
    Publication date: April 11, 2024
    Inventors: Shaowu HUANG, Javier A. DELACRUZ, Liang WANG, Guilian GAO
  • Patent number: 11955445
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a metal pad having a larger diameter or surface area (e.g., oversized for the application) may be used when a contact pad is positioned over a TSV in one or both substrates.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: April 9, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Belgacem Haba, Rajesh Katkar
  • Patent number: 11955463
    Abstract: Direct bonded stack structures for increased reliability and improved yields in microelectronics are provided. Structural features and stack configurations are provided for memory modules and 3DICs to reduce defects in vertically stacked dies. Example processes alleviate warpage stresses between a thicker top die and direct bonded dies beneath it, for example. An etched surface on the top die may relieve warpage stresses. An example stack may include a compliant layer between dies. Another stack configuration replaces the top die with a layer of molding material to circumvent warpage stresses. An array of cavities on a bonding surface can alleviate stress forces. One or more stress balancing layers may also be created on a side of the top die or between other dies to alleviate or counter warpage. Rounding of edges can prevent stresses and pressure forces from being destructively transmitted through die and substrate layers. These measures may be applied together or in combinations in a single package.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: April 9, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Thomas Workman, Guilian Gao, Gaius Gillman Fountain, Jr., Laura Wills Mirkarimi, Belgacem Haba, Gabriel Z. Guevara, Joy Watanabe
  • Publication number: 20240113059
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20240088101
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a through-silicon via (TSV) may be disposed through at least one of the microelectronic substrates. The TSV is exposed at the bonding interface of the substrate and functions as a contact surface for direct bonding.
    Type: Application
    Filed: August 17, 2023
    Publication date: March 14, 2024
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, JR., Cyprian Emeka Uzoh, Belgacem Haba, Laura Wills Mirkarimi, Rajesh Katkar