Patents by Inventor Guiling WU

Guiling WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11764876
    Abstract: An optical frequency transfer device based on passive phase compensation and a transfer method are provided, where the device comprises a local side, a transfer link and a user side. Optical frequency transfer based on passive phase compensation is achieved by simple optical frequency mixing, microwave filtration, and frequency division processing in a passive phase compensation manner, and the device has simple system structure and high reliability.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 19, 2023
    Assignee: Shanghai Jiao Tong University
    Inventors: Liang Hu, Guiling Wu, Jianping Chen
  • Publication number: 20230188216
    Abstract: An optical millimeter wave terahertz transfer system and transfer method are disclosed. The device comprises a local terminal, a transfer link, an access terminal, and a user terminal. By using the device in the transfer link, optical signals transferred forward and backward are extracted through optical couplers, and millimeter wave terahertz signals with a stable phase are obtained at any position in the transfer link through optical signal filtering, photovoltaic conversion, microwave filtering, frequency division and optical frequency shift processing. The device and method have the characteristics of high reliability, simple structure, and low implementation cost.
    Type: Application
    Filed: September 8, 2022
    Publication date: June 15, 2023
    Inventors: Liang HU, Qi LI, Guiling WU, Jiao LIU, Jianping CHEN
  • Publication number: 20220263584
    Abstract: An optical frequency transfer device based on passive phase compensation and a transfer method are provided, where the device comprises a local side, a transfer link and a user side. Optical frequency transfer based on passive phase compensation is achieved by simple optical frequency mixing, microwave filtration, and frequency division processing in a passive phase compensation manner, and the device has simple system structure and high reliability.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Inventors: Liang HU, Guiling Wu, Jianping Chen
  • Patent number: 11146334
    Abstract: System and method for fiber-optic time frequency and data joint transmission, comprising local end, relay nodes, and remote end. In each local end, relay node, and remote end, multiplexing and demultiplexing of time frequency signals, optical supervisory signals, and optical communication data services are performed by CWDM modules and OSC-band wavelength multiplexer/demultiplexers, and processing (transmitting, relaying, receiving) is performed by corresponding processing modules for joint transmission. A sub-band of standard OSC band is used for transmitting time frequency signal so that transmission of optical supervisory signal is not influenced while no extra band resource is occupied with improved utilization of wavelength resources and reduced costs.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 12, 2021
    Assignee: Shanghai Jiao Tong University
    Inventor: Guiling Wu
  • Publication number: 20210021345
    Abstract: System and method for fiber-optic time frequency and data joint transmission, comprising local end, relay nodes, and remote end. In each local end, relay node, and remote end, multiplexing and demultiplexing of time frequency signals, optical supervisory signals, and optical communication data services are performed by CWDM modules and OSC-band wavelength multiplexer/demultiplexers, and processing (transmitting, relaying, receiving) is performed by corresponding processing modules for joint transmission. A sub-band of standard OSC band is used for transmitting time frequency signal so that transmission of optical supervisory signal is not influenced while no extra band resource is occupied with improved utilization of wavelength resources and reduced costs.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventor: Guiling WU
  • Patent number: 10797803
    Abstract: A waveform matching based optical digital signal receiving device sequentially comprises an optical arbitrary waveform generator unit, an electro-optic modulator unit, an opto-electric converter unit, an electric filter unit, a sampling and judging module, a digital signal processing unit and a bit-timing extracting module. Accordingly, signal matched filtering, sampling and judgment can be effectively carried out in the optical domain, and the influence of noises on signal reception can be eliminated to the maximum extent, thereby achieving accurate detection and reception of signals. Meanwhile, compared with a conventional electric receiving device, the digital signal receiving device provided by the present invention breaks the limitation of “electronic bottleneck,” and greatly improves the bandwidth of signal reception, which allows digital signal reception at a higher speed.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 6, 2020
    Assignee: Shanghai Jiao Tong University
    Inventors: Guiling Wu, Sitong Wang, Yiwei Sun, Jianping Chen
  • Patent number: 10797790
    Abstract: Microwave photonic vector network analyzer and a method for measuring scattering parameters of a microwave device are provided. The analyzer comprises a microwave source, wherein a signal loading module, an optical sampling module and a signal processing module are sequentially arranged along a signal output direction of the microwave source; an output end of the signal processing module is respectively connected with a control end of the microwave source and a control end of the optical sampling module; and two test ports of the signal loading module are connected with both ends of a device to be tested. The invention realizes direct sampling and frequency conversion for microwave signals, abandons a superheterodyne structure and/or direct frequency conversion structure in the traditional network analyzer, simplifies the structure of the system while improving the measurement frequency range and avoiding image interference, and reduces system complexity, cost and power consumption.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 6, 2020
    Assignee: Shanghai Jiao Tong University
    Inventors: Guiling Wu, Min Ding, Zhengtao Jin
  • Patent number: 10651937
    Abstract: A method and system for high-precision long-distance distributed fiber-optic time transfer. The system comprises a first clock source, a first fiber-optic time transfer unit, N relay and user units, M bidirectional optical amplifying units, a second fiber-optic time transfer unit, and a second clock source. Each relay and user unit obtains timing signals synchronized with the first clock source according to time interval between received forward and backward timing signals and realize distributed fiber-optic time transfer while realizing optical-electric-optical relay of forward and backward transmitted optical signals.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 12, 2020
    Assignee: Shanghai Jiao Tong University
    Inventor: Guiling Wu
  • Publication number: 20200106520
    Abstract: Microwave photonic vector network analyzer and a method for measuring scattering parameters of a microwave device are provided. The analyzer comprises a microwave source, wherein a signal loading module, an optical sampling module and a signal processing module are sequentially arranged along a signal output direction of the microwave source; an output end of the signal processing module is respectively connected with a control end of the microwave source and a control end of the optical sampling module; and two test ports of the signal loading module are connected with both ends of a device to be tested. The invention realizes direct sampling and frequency conversion for microwave signals, abandons a superheterodyne structure and/or direct frequency conversion structure in the traditional network analyzer, simplifies the structure of the system while improving the measurement frequency range and avoiding image interference, and reduces system complexity, cost and power consumption.
    Type: Application
    Filed: November 18, 2019
    Publication date: April 2, 2020
    Inventors: Guiling WU, Min DING, Zhengtao JIN
  • Publication number: 20200083961
    Abstract: A waveform matching based optical digital signal receiving device sequentially comprises an optical arbitrary waveform generator unit, an electro-optic modulator unit, an opto-electric converter unit, an electric filter unit, a sampling and judging module, a digital signal processing unit and a bit-timing extracting module. Accordingly, signal matched filtering, sampling and judgment can be effectively carried out in the optical domain, and the influence of noises on signal reception can be eliminated to the maximum extent, thereby achieving accurate detection and reception of signals. Meanwhile, compared with a conventional electric receiving device, the digital signal receiving device provided by the present invention breaks the limitation of “electronic bottleneck,” and greatly improves the bandwidth of signal reception, which allows digital signal reception at a higher speed.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Guiling WU, Sitong WANG, Yiwei SUN, Jianping CHEN
  • Publication number: 20190190601
    Abstract: A method and system for high-precision long-distance distributed fiber-optic time transfer. The system comprises a first clock source, a first fiber-optic time transfer unit, N relay and user units, M bidirectional optical amplifying units, a second fiber-optic time transfer unit, and a second clock source. Each relay and user unit obtains timing signals synchronized with the first clock source according to time interval between received forward and backward timing signals and realize distributed fiber-optic time transfer while realizing optical-electric-optical relay of forward and backward transmitted optical signals.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 20, 2019
    Inventor: Guiling WU
  • Patent number: 10063315
    Abstract: A method and system for high-precision two-way fiber-optic time transfer comprising pre-adjusting, including calculating a local timing signal adjustment amount for a first fiber-optic time synchronization unit and a second fiber-optic time synchronization unit, and the corresponding adjusting. and following steps including the two fiber-optic time synchronization units conducting two-way time transfer based on a time division multiplexing transmission over an optical fiber link. The present invention realizes high-precision fiber-optic time transfer by combining two-way time transfer and bidirectional time division multiplexing technique.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: August 28, 2018
    Assignee: SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Guiling Wu, Liang Hu, Hao Zhang, Jianping Chen
  • Publication number: 20170104528
    Abstract: A method and system for high-precision two-way fiber-optic time transfer comprising pre-adjusting, including calculating a local timing signal adjustment amount for a first fiber-optic time synchronization unit and a second fiber-optic time synchronization unit, and the corresponding adjusting. and following steps including the two fiber-optic time synchronization units conducting two-way time transfer based on a time division multiplexing transmission over an optical fiber link. The present invention realizes high-precision fiber-optic time transfer by combining two-way time transfer and bidirectional time division multiplexing technique.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventors: GUILING WU, LIANG HU, HAO ZHANG, JIANPING CHEN
  • Patent number: 9537576
    Abstract: A format for modified IRIB-G time code, with added message fields while preserving pulse width coding rule of the standard IRIG-B time code, having a time interval field for carrying time interval between the local time signal and a received time signal, and a user-defined or padded field for carrying user-defined time and/or control messages. An encoding and a decoding methods and devices for high-precision time transfer, where the modified IRIG-B time code carries more messages, and enabling transmission of timing messages and testing messages of two-way time comparison via a single message channel at the same time, which reduces fluctuation due to encoding and decoding manipulation and correlation with working frequencies via exact synchronization between the on-times of the output encoded time code and the transmitted time signal, and between the on-times of the output decoded time signal and the input time code, and improves precision of time transfer.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: January 3, 2017
    Assignee: Shanghai Jiao Tong University
    Inventors: Guiling Wu, Liang Hu, Jianguo Shen, Weiwen Zou, Jianping Chen
  • Publication number: 20150093122
    Abstract: A format for modified IRIB-G time code, with added message fields while preserving pulse width coding rule of the standard IRIG-B time code, having a time interval field for carrying time interval between the local time signal and a received time signal, and a user-defined or padded field for carrying user-defined time and/or control messages. An encoding and a decoding methods and devices for high-precision time transfer, where the modified IRIG-B time code carries more messages, and enabling transmission of timing messages and testing messages of two-way time comparison via a single message channel at the same time, which reduces fluctuation due to encoding and decoding manipulation and correlation with working frequencies via exact synchronization between the on-times of the output encoded time code and the transmitted time signal, and between the on-times of the output decoded time signal and the input time code, and improves precision of time transfer.
    Type: Application
    Filed: December 5, 2014
    Publication date: April 2, 2015
    Inventors: Guiling WU, Liang Hu, Jianguo Shen, Weiwen Zou, Jianping Chen