Patents by Inventor Guillaume AUDOIT

Guillaume AUDOIT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11575003
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a nanosheet stack comprising one or more layers, wherein the one or more layers are induced with strain from a modified sacrificial gate. The semiconductor device also includes one or more merged S/D regions formed on exposed portions of the nanosheet stack, wherein the one or more merged S/D regions fix the strain of the one or more layers, and a conductive gate formed over the nanosheet stack, wherein the conductive gate replaces a modified sacrificial gate without impacting the strain induced in the one or more layers. Also provided are embodiments for a method for creating stress in the channel of a nanosheet transistor.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: February 7, 2023
    Assignees: International Business Machines Corporation
    Inventors: Nicolas Loubet, Tenko Yamashita, Guillaume Audoit, Nicolas Bernier, Remi Coquand, Shay Reboh
  • Publication number: 20210257450
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a nanosheet stack comprising one or more layers, wherein the one or more layers are induced with strain from a modified sacrificial gate. The semiconductor device also includes one or more merged S/D regions formed on exposed portions of the nanosheet stack, wherein the one or more merged S/D regions fix the strain of the one or more layers, and a conductive gate formed over the nanosheet stack, wherein the conductive gate replaces a modified sacrificial gate without impacting the strain induced in the one or more layers. Also provided are embodiments for a method for creating stress in the channel of a nanosheet transistor.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 19, 2021
    Inventors: Nicolas Loubet, Tenko Yamashita, Guillaume Audoit, Nicolas Bernier, Remi Coquand, Shay Reboh
  • Patent number: 11049933
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a nanosheet stack comprising one or more layers, wherein the one or more layers are induced with strain from a modified sacrificial gate. The semiconductor device also includes one or more merged S/D regions formed on exposed portions of the nanosheet stack, wherein the one or more merged S/D regions fix the strain of the one or more layers, and a conductive gate formed over the nanosheet stack, wherein the conductive gate replaces a modified sacrificial gate without impacting the strain induced in the one or more layers. Also provided are embodiments for a method for creating stress in the channel of a nanosheet transistor.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 29, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Nicolas Loubet, Tenko Yamashita, Guillaume Audoit, Nicolas Bernier, Remi Coquand, Shay Reboh
  • Publication number: 20210020743
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a nanosheet stack comprising one or more layers, wherein the one or more layers are induced with strain from a modified sacrificial gate. The semiconductor device also includes one or more merged S/D regions formed on exposed portions of the nanosheet stack, wherein the one or more merged S/D regions fix the strain of the one or more layers, and a conductive gate formed over the nanosheet stack, wherein the conductive gate replaces a modified sacrificial gate without impacting the strain induced in the one or more layers. Also provided are embodiments for a method for creating stress in the channel of a nanosheet transistor.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: Nicolas Loubet, Tenko Yamashita, Guillaume Audoit, Nicolas Bernier, Remi Coquand, Shay Reboh
  • Patent number: 10481109
    Abstract: A method for characterizing a sample combining an X-ray tomography characterization technique and a secondary ionization mass spectrometry characterization technique, includes: a step of providing a tip that includes first and second end surfaces, a first cylindrical region bearing the first end surface and a second region in contact with the first cylindrical region and becoming slimmer towards the second end surface; a step of machining the second region to obtain a sample holder including a flat surface, the flat surface forming an end surface of the sample holder, the area of the flat surface being less than the area of the first end surface; a step of placing the sample on the flat surface of the sample holder; a first step of characterization of the sample using an X-ray characterization technique; a second step of characterization of the sample using a secondary ionization mass spectrometry characterization technique.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: November 19, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Agnieszka Priebe, Guillaume Audoit, Jean-Paul Barnes
  • Patent number: 10190953
    Abstract: Sample pillars for x-ray tomography or other tomography scanning are created using an innovative milling strategy on a Plasma-FIB. The strategies are provided in methods, systems, and program products executable to perform the strategies herein. The milling strategy creates an asymmetrical crater around a sample pillar, and provides a single cut cut-free process. Various embodiments may include tuning the ion dose as a function of pixel coordinates along with optimization of the beam scan and crater geometries, drastically reducing the preparation time and significantly improving the overall workflow efficiency. A novel cut-free milling pattern is provided with a crescent shape and optimized dwell-time values.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: January 29, 2019
    Inventors: Guillaume Delpy, Guillaume Audoit, Laurens Franz Taemsz Kwakman, Chad Rue, Jorge Filevich
  • Publication number: 20180143110
    Abstract: Sample pillars for x-ray tomography or other tomography scanning are created using an innovative milling strategy on a Plasma-FIB. The strategies are provided in methods, systems, and program products executable to perform the strategies herein. The milling strategy creates an asymmetrical crater around a sample pillar, and provides a single cut cut-free process. Various embodiments may include tuning the ion dose as a function of pixel coordinates along with optimization of the beam scan and crater geometries, drastically reducing the preparation time and significantly improving the overall workflow efficiency. A novel cut-free milling pattern is provided with a crescent shape and optimized dwell-time values.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 24, 2018
    Applicant: FEI Company
    Inventors: Guillaume Delpy, Guillaume Audoit, Laurens Franz Taemsz Kwakman, Chad Rue
  • Publication number: 20170219502
    Abstract: A method for characterizing a sample combining an X-ray tomography characterization technique and a secondary ionization mass spectrometry characterization technique, includes: a step of providing a tip that includes first and second end surfaces, a first cylindrical region bearing the first end surface and a second region in contact with the first cylindrical region and becoming slimmer towards the second end surface; a step of machining the second region to obtain a sample holder including a flat surface, the flat surface forming an end surface of the sample holder, the area of the flat surface being less than the area of the first end surface; a step of placing the sample on the flat surface of the sample holder; a first step of characterization of the sample using an X-ray characterization technique; a second step of characterization of the sample using a secondary ionization mass spectrometry characterization technique.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 3, 2017
    Inventors: Agnieszka PRIEBE, Guillaume AUDOIT, Jean-Paul BARNES