Patents by Inventor Guillaume Besnard

Guillaume Besnard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145314
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Application
    Filed: January 2, 2024
    Publication date: May 2, 2024
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Patent number: 11876020
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: January 16, 2024
    Assignee: SOITEC
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Patent number: 11469367
    Abstract: A method for separating a removable composite structure using a light flux includes supplying the removable composite structure, which successively comprises: a substrate that is transparent to the light flux; an optically absorbent layer for at least partially absorbing a light flux; a sacrificial layer adapted to dissociate subject to the application of a temperature higher than a dissociation temperature and made of a material different from that of the optically absorbent layer; and at least one layer to be separated. The method further includes applying a light flux through the substrate, the light flux being at least partly absorbed by the optically absorbent layer, so as to heat the optically absorbent layer; heating the sacrificial layer by thermal conduction from the optically absorbent layer, up to a temperature that is greater than or equal to the dissociation temperature; and dissociating the sacrificial layer under the effect of the heating.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 11, 2022
    Assignee: Soitec
    Inventors: Jean-Marc Bethoux, Guillaume Besnard, Yann Sinquin
  • Publication number: 20210202326
    Abstract: A method for manufacturing a CFET device comprises forming a substrate of the double semi-conductor on insulator type, successively comprising, from the base to the surface thereof: a carrier substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. Slices are formed into the substrate to the first electrically insulating layer so as to form at least one fin (F). A channel of a first transistor is formed in the first semiconductor layer and a channel of a second transistor is formed opposite the first transistor in the second semiconductor layer. Formation of the substrate of the double semi-conductor on insulator type, comprises: a first and a second step of transferring a layer and thermal processing at a temperature that is sufficiently high to smooth the first single-crystal semiconductor layer to a roughness lower than 0.1 nm RMS.
    Type: Application
    Filed: September 3, 2019
    Publication date: July 1, 2021
    Inventors: Walter Schwarzenbach, Ludovic Ecarnot, Nicolas Daval, Bich-Yen Nguyen, Guillaume Besnard
  • Publication number: 20210028348
    Abstract: A method for separating a removable composite structure using a light flux includes supplying the removable composite structure, which successively comprises: a substrate that is transparent to the light flux; an optically absorbent layer for at least partially absorbing a light flux; a sacrificial layer adapted to dissociate subject to the application of a temperature higher than a dissociation temperature and made of a material different from that of the optically absorbent layer; and at least one layer to be separated. The method further includes applying a light flux through the substrate, the light flux being at least partly absorbed by the optically absorbent layer, so as to heat the optically absorbent layer; heating the sacrificial layer by thermal conduction from the optically absorbent layer, up to a temperature that is greater than or equal to the dissociation temperature; and dissociating the sacrificial layer under the effect of the heating.
    Type: Application
    Filed: March 22, 2019
    Publication date: January 28, 2021
    Applicants: Soitec, Soitec
    Inventors: Jean-Marc Bethoux, Guillaume Besnard, Yann Sinquin