Patents by Inventor Guillaume Chabin

Guillaume Chabin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810291
    Abstract: Systems and methods for generating a synthesized medical image are provided. An input medical image is received. A synthesized segmentation mask is generated. The input medical image is masked based on the synthesized segmentation mask. The masked input medical image has an unmasked portion and a masked portion. An initial synthesized medical image is generated using a trained machine learning based generator network. The initial synthesized medical image includes a synthesized version of the unmasked portion of the masked input medical image and synthesized patterns in the masked portion of the masked input medical image. The synthesized patterns is fused with the input medical image to generate a final synthesized medical image.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 7, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Siqi Liu, Bogdan Georgescu, Zhoubing Xu, Youngjin Yoo, Guillaume Chabin, Shikha Chaganti, Sasa Grbic, Sebastien Piat, Brian Teixeira, Thomas Re, Dorin Comaniciu
  • Publication number: 20230237647
    Abstract: Systems and methods for performing an assessment of a lesion are provided. A plurality of input medical images of a lesion is received. The plurality of input medical images comprises an initial input medical image and one or more additional input medical images. The initial input medical image comprises a region of interest around the lesion. A mask of the lesion is curated for the initial input medical image based on the region of interest and a set of candidate masks. The region of interest in the initial input medical image is propagated to the one or more additional input medical images based on prior registration transformations. A mask of the lesion is curated for each of the one or more additional input medical images based on the propagated regions of interest and the set of candidate masks. One or more assessments of the lesion are performed based on the mask for the initial input medical image, the masks for the one or more additional input medical images, and prior assessments of lesions.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 27, 2023
    Inventors: Zhoubing Xu, Guillaume Chabin, Matteo Barbieri, Alin Madalin Draghia, Manasi Datar, Thomas Pheiffer, Ioan Marius Popdan, Robert Grimm, Heinrich von Busch, Sasa Grbic
  • Publication number: 20220392614
    Abstract: Techniques of determining a quantification of at least one characteristic of a muscle structure comprising at least one muscle and at least one tendon are disclosed. The quantification of the at least one characteristic of the rotator cuff may be determined by using at least one artificial neural network and based on one or more medical images depicting the muscle structure of a patient.
    Type: Application
    Filed: May 9, 2022
    Publication date: December 8, 2022
    Inventors: Michael Schwier, Bernhard Geiger, Sasa Grbic, Esther Raithel, Dana Lin, Guillaume Chabin
  • Patent number: 11430121
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 30, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Publication number: 20220249014
    Abstract: Systems and methods for an intuitive display of one or more anatomical objects are provided. One or more 3D medical images of one or more anatomical objects of a patient are received. Correspondences between the one or more 3D medical images and points on a 2D map representing the one or more anatomical objects are determined. The 2D map is updated with patient information extracted from the one or more 3D medical images. The updated 2D map with the determined correspondences is output.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: Bernhard Geiger, Michael Schwier, Sasa Grbic, Esther Raithel, Dana Lin, Guillaume Chabin
  • Publication number: 20220092786
    Abstract: The invention describes a method for automatically localizing organ segments in a three-dimensional image comprising the following steps: providing a three-dimensional image showing at least one organ and at least one tubular network comprising a plurality of tubular structures, the organ comprising organ segments; performing automatic separation of the organ from other parts of the image; performing automatic tracing of the tubular network to obtain a branch map; performing automatic analysis of the branch map to identify specific tubular structures; performing automatically assigning regions of the organ to the specific tubular structures to segment the organ into localized organ segments; and outputting the localized organ segments and the traced and analyzed tubular network as image data. The invention further describes a localization arrangement and a medical imaging system.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 24, 2022
    Inventors: Zhoubing Xu, Sasa Grbic, Dominik Neumann, Guillaume Chabin, Bruce Spottiswoode, Fei Gao, Günther Platsch
  • Publication number: 20210398654
    Abstract: Systems and methods for automatically detecting a disease in medical images are provided. Input medical images are received. A plurality of metrics for a disease is computed for each of the input medical images. The input medical images are clustered into a plurality of clusters based on one or more of the plurality of metrics to classify the input medical images. The plurality of clusters comprise a cluster of one or more of the input medical images associated with the disease and one or more clusters of one or more of the input medical images not associated with the disease. In one embodiment, the disease is COVID-19 (coronavirus disease 2019).
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Guillaume Chabin, Thomas Re, Youngjin Yoo, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu
  • Publication number: 20210327054
    Abstract: Systems and methods for generating a synthesized medical image are provided. An input medical image is received. A synthesized segmentation mask is generated. The input medical image is masked based on the synthesized segmentation mask. The masked input medical image has an unmasked portion and a masked portion. An initial synthesized medical image is generated using a trained machine learning based generator network. The initial synthesized medical image includes a synthesized version of the unmasked portion of the masked input medical image and synthesized patterns in the masked portion of the masked input medical image. The synthesized patterns is fused with the input medical image to generate a final synthesized medical image.
    Type: Application
    Filed: May 1, 2020
    Publication date: October 21, 2021
    Inventors: Siqi Liu, Bogdan Georgescu, Zhoubing Xu, Youngjin Yoo, Guillaume Chabin, Shikha Chaganti, Sasa Grbic, Sebastien Piat, Brian Teixeira, Thomas Re, Dorin Comaniciu
  • Publication number: 20210304408
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Application
    Filed: April 1, 2020
    Publication date: September 30, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Patent number: 11074688
    Abstract: For processing a medical image, medical image data representing a medical image of at least a portion of a vertebral column is received. The medical image data is processed to determine a plurality of positions within the image. Each of the plurality of positions corresponds to a position relating to a vertebral bone within the vertebral column. Data representing the plurality of positions is processed to determine a degree of deformity of at least one vertebral bone within the vertebral column.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Guillaume Chabin, Jonathan Sperl, Rainer Kärgel, Sasa Grbic, Razvan Ionasec, Dorin Comaniciu
  • Patent number: 11049223
    Abstract: Systems and methods are provided for generating a synthesized medical image patch of a nodule. An initial medical image patch and a class label associated with a nodule to be synthesized are received. The initial medical image patch has a masked portion and an unmasked portion. A synthesized medical image patch is generated using a trained generative adversarial network. The synthesized medical image patch includes the unmasked portion of the initial medical image patch and a synthesized nodule replacing the masked portion of the initial medical image patch. The synthesized nodule is synthesized according to the class label. The synthesized medical image patch is output.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Jie Yang, Siqi Liu, Sasa Grbic, Arnaud Arindra Adiyoso, Zhoubing Xu, Eli Gibson, Guillaume Chabin, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20210182674
    Abstract: Systems and methods for automatically training a machine learning based model are provided. A trigger for automatically training a machine learning based model is received. In response to receiving the trigger, a preprocessing manager for executing preprocessing code for preprocessing training data is automatically invoked. A training manager for executing training code for training the machine learning based model based on the preprocessed training data is automatically invoked. A deployment manager for executing deployment code for converting the trained machine learning based model to a production model is automatically invoked. The production model is output.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 17, 2021
    Inventors: Axel Avedis Petit, Guillaume Chabin, Eli Gibson, Sasa Grbic, Dorin Comaniciu
  • Publication number: 20200402215
    Abstract: Systems and methods are provided for generating a synthesized medical image patch of a nodule. An initial medical image patch and a class label associated with a nodule to be synthesized are received. The initial medical image patch has a masked portion and an unmasked portion. A synthesized medical image patch is generated using a trained generative adversarial network. The synthesized medical image patch includes the unmasked portion of the initial medical image patch and a synthesized nodule replacing the masked portion of the initial medical image patch. The synthesized nodule is synthesized according to the class label. The synthesized medical image patch is output.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Jie Yang, Siqi Liu, Sasa Grbic, Arnaud Arindra Adiyoso, Zhoubing Xu, Eli Gibson, Guillaume Chabin, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20200332773
    Abstract: A method for predicting a wind turbine oil filter wear level wherein a differential pressure exists between upstream and downstream sides of the filter. The method includes extracting features from wind turbine sensor data to provide extracted data and selecting features from the extracted data that correlate with a change in the differential pressure. The method also includes estimating a filter condition by learning a filter regressive linear model that uses filter direct environment operating conditions data obtained from the extracted data. In addition, the method includes forecasting at least one operating condition scenario represented by three features obtained from the extracted data. Further, the method includes forecasting a filter wear level wherein the filter model uses the at least one forecasted operating condition scenario represented by the three features.
    Type: Application
    Filed: February 7, 2017
    Publication date: October 22, 2020
    Inventors: Guillaume Chabin, Amit Chakraborty, Akshay Patwal, Jennifer Zelmanski
  • Patent number: 10762632
    Abstract: Systems and methods for determining whether a bone of a patient is injured are provided. A medical image of a bone of a patient is received. A synthesized bone image is generated over the bone in the medical image to provide a reconstructed image. The synthesized bone image represents uninjured bone. The medical image is compared with the reconstructed image to evaluate an injury to the bone of the patient.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 1, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Guillaume Chabin, Zhoubing Xu, Amitkumar Bhupendrakumar Shah, Sasa Grbic
  • Publication number: 20200160515
    Abstract: For processing a medical image, medical image data representing a medical image of at least a portion of a vertebral column is received. The medical image data is processed to determine a plurality of positions within the image. Each of the plurality of positions corresponds to a position relating to a vertebral bone within the vertebral column. Data representing the plurality of positions is processed to determine a degree of deformity of at least one vertebral bone within the vertebral column.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 21, 2020
    Inventors: Guillaume Chabin, Jonathan Sperl, Rainer Kärgel, Sasa Grbic, Razvan Ionasec, Dorin Comaniciu
  • Publication number: 20200082530
    Abstract: Systems and methods for determining whether a bone of a patient is injured are provided. A medical image of a bone of a patient is received. A synthesized bone image is generated over the bone in the medical image to provide a reconstructed image. The synthesized bone image represents uninjured bone. The medical image is compared with the reconstructed image to evaluate an injury to the bone of the patient.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Inventors: Guillaume Chabin, Zhoubing Xu, Amitkumar Bhupendrakumar Shah, Sasa Grbic
  • Publication number: 20190295709
    Abstract: Systems and methods are provided for determining an analytic measure of a patient population. A knowledge database comprising structured patient data for a patient population is maintained. The structured patient data is generated by processing unstructured medical imaging data for the patient population using one or more machine learning algorithms. An analytic measure of the patient population is determined based on the structured patient data of the knowledge database. The analytic measure of the patient population is output.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventors: Guillaume Chabin, Sasa Grbic, Thomas Re, Bogdan Georgescu, Afshin Ezzi, Dorin Comaniciu, Daphne Yu
  • Publication number: 20190188581
    Abstract: A computer-implemented method for performing predictive maintenance includes executing a fleet prediction process. During this fleet prediction process, a plurality of fleet data records is collected. Each fleet data record comprises sensor data from a particular physical component in a fleet of physical components. A plurality of component maintenance predictions related to the fleet of physical components is generated. Each component maintenance prediction corresponds to a particular physical component. The plurality of component predictions are merged into one or more fleet maintenance predictions and the fleet maintenance predictions are presented to one or more users. Following the fleet prediction process, a next execution of the fleet prediction process is scheduled based on the fleet maintenance predictions.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: Guillaume Chabin, Ioannis Akrotirianakis, Amit Chakraborty