Patents by Inventor Guillaume Daval Frerot

Guillaume Daval Frerot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366961
    Abstract: A method of performing magnetic resonance imaging of a body using a magnetic resonance imaging scanner the method includes applying to the body a time-varying magnetic field gradient (Gx, Gy, Gz) defining a continuous trajectory (ST) in k-space complying with a set of constraints including constraints on maximum amplitude and maximum slew rate of the time-varying magnetic field gradient, such that sampling points (KS) belonging to the trajectory define a pseudo-random sampling of the k-space, approximating a predetermined target sampling density, the trajectory in k-space minimizing, subject to the set of constraints, a cost function defined by the difference between a first term, called attraction term, promoting consistency of the distribution of sampling points in k-space with the predetermined target sampling density, and a second term, called repulsion term, promoting separation in k-space between sampling points, the repulsion term being expressed as a sum of contributions corresponding to respective pa
    Type: Application
    Filed: April 21, 2023
    Publication date: November 16, 2023
    Inventors: Chaithya GILIYAR RADHAKRISHNA, Guillaume DAVAL FREROT, Alexandre VIGNAUD, Philippe CIUCIU
  • Patent number: 11580381
    Abstract: For machine training and application of a trained complex-valued machine learning model, an activation function of the machine learning model, such as a neural network, includes a learnable parameter that is complex or defined in a complex domain with two dimensions, such as real and imaginary or magnitude and phase dimensions. The complex learnable parameter is trained for any of various applications, such as MR fingerprinting, other medical imaging, or non-medical uses.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: February 14, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Guillaume Daval Frerot, Xiao Chen, Simon Arberet, Boris Mailhe, Mariappan S. Nadar, Peter Speier, Mathias Nittka
  • Publication number: 20220189081
    Abstract: A magnetic resonance (MR) image may be created from MR data by receiving the MR data, applying a transform to the MR data, where a result of the applying is an image space representation of the MR data, determining a wrapped phase map of the image space representation of the MR data, obtaining an unwrapped phase map based on the wrapped phase map, scaling the unwrapped phase map into a B0 field map, reconstructing the MR image based on the MR data, correcting the MR image based on the B0 field map, and outputting the MR image. The scaling may be free of accounting for effects on the MR data by artifact sources secondary to B0 field inhomogeneities.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 16, 2022
    Inventors: Guillaume Daval-Frerot, Aurelien Massire, Mathilde Ripart, Boris Mailhe, Mariappan S. Nadar, Alexandre Vignaud, Philippe Ciuciu
  • Patent number: 11346911
    Abstract: Machine training a network for and use of the machine-trained network are provided for tissue parameter estimation for a magnetic scanner using magnetic resonance fingerprinting. The machine-trained network is trained to both reconstruct a fingerprint image or fingerprint and to estimate values for multiple tissue parameters in magnetic resonance fingerprinting. The reconstruction of the fingerprint image or fingerprint may reduce noise, such as aliasing, allowing for more accurate estimation of the values of the multiple tissue parameters from the under sampled magnetic resonance fingerprinting information.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: May 31, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Guillaume Daval Frerot, Xiao Chen, Mariappan S. Nadar, Peter Speier, Mathias Nittka, Boris Mailhe, Simon Arberet
  • Publication number: 20200041597
    Abstract: Machine training a network for and use of the machine-trained network are provided for tissue parameter estimation for a magnetic scanner using magnetic resonance fingerprinting. The machine-trained network is trained to both reconstruct a fingerprint image or fingerprint and to estimate values for multiple tissue parameters in magnetic resonance fingerprinting. The reconstruction of the fingerprint image or fingerprint may reduce noise, such as aliasing, allowing for more accurate estimation of the values of the multiple tissue parameters from the under sampled magnetic resonance fingerprinting information.
    Type: Application
    Filed: January 3, 2019
    Publication date: February 6, 2020
    Inventors: Guillaume Daval Frerot, Xiao Chen, Mariappan S. Nadar, Peter Speier, Mathias Nittka, Boris Mailhe, Simon Arberet
  • Publication number: 20200042873
    Abstract: For machine training and application of a trained complex-valued machine learning model, an activation function of the machine learning model, such as a neural network, includes a learnable parameter that is complex or defined in a complex domain with two dimensions, such as real and imaginary or magnitude and phase dimensions. The complex learnable parameter is trained for any of various applications, such as MR fingerprinting, other medical imaging, or non-medical uses.
    Type: Application
    Filed: April 25, 2019
    Publication date: February 6, 2020
    Inventors: Guillaume Daval Frerot, Xiao Chen, Simon Arberet, Boris Mailhe, Mariappan S. Nadar, Peter Speier, Mathias Nittka