Patents by Inventor Guillaume Guegan

Guillaume Guegan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9595393
    Abstract: A dielectric-thin-film forming composition for forming a BST dielectric thin film, includes a liquid composition for forming a thin film which takes a form of a mixed composite metal oxide in which a composite oxide B including Cu (copper) is mixed into a composite metal oxide A expressed by a formula: Ba1-xSrxTiyO3 (wherein 0.2<x<0.6 and 0.9<y<1.1), the liquid composition is an organic metal compound solution in which a raw material for composing the composite metal oxide A and a raw material for composing the composite oxide B are dissolved in an organic solvent at a proportion having a metal atom ratio expressed by the formula shown above and a molar ratio between A and B in the range of 0.001?B/A<0.15.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 14, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Guillaume Guegan, Toshiaki Watanabe, Nobuyuki Soyama, Hideaki Sakurai
  • Patent number: 9018118
    Abstract: A liquid composition is provided for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing copper (Cu) and a composite oxide C containing manganese (Mn) are mixed into a composite metal oxide A represented with the general formula: Ba1-xSrxTiyO3, wherein the molar ratio B/A of the composite oxide B to the composite metal oxide A is within the range of 0.002<B/A<0.05, and the molar ratio C/A of the composite oxide C to the composite metal oxide A is within the range of 0.002<C/A<0.03.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 28, 2015
    Assignees: Mitsubishi Materials Corporation, STMicroelectronics(Tours) SAS
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Guillaume Guegan
  • Patent number: 8680649
    Abstract: A multi-layer capacitor of staggered construction is formed of one or more layers having tapered sidewall(s). The edge(s) of the capacitor film(s) can be etched to have a gentle slope, which can improve adhesion of the overlying layers and provide more uniform film thickness. The multi-layer capacitor can be used in various applications such as filtering and decoupling.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Guillaume Guégan
  • Patent number: 8648992
    Abstract: A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: February 11, 2014
    Assignees: Mitsubishi Materials Corporation, STMicroelectronics(Tours) SAS
    Inventors: Hideaki Sakurai, Toshiaki Watanabe, Nobuyuki Soyama, Guillaume Guegan
  • Publication number: 20130299943
    Abstract: A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventors: Hideaki Sakurai, Toshiaki Watanabe, Nobuyuki Soyama, Guillaume Guegan
  • Patent number: 8501560
    Abstract: A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 6, 2013
    Assignees: Mitusbishi Materials Corporation, STMicroelectronics(Tours) SAS
    Inventors: Hideaki Sakurai, Toshiaki Watanabe, Nobuyuki Soyama, Guillaume Guegan
  • Publication number: 20120055372
    Abstract: A dielectric-thin-film forming composition for forming a BST dielectric thin film, includes a liquid composition for forming a thin film which takes a form of a mixed composite metal oxide in which a composite oxide B including Cu (copper) is mixed into a composite metal oxide A expressed by a formula: Ba1-xSrxTiyO3 (wherein 0.2<x<0.6 and 0.9<y<1.1), the liquid composition is an organic metal compound solution in which a raw material for composing the composite metal oxide A and a raw material for composing the composite oxide B are dissolved in an organic solvent at a proportion having a metal atom ratio expressed by the formula shown above and a molar ratio between A and B in the range of 0.001?B/A<0.15.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 8, 2012
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Guillaume Guegan, Toshiaki Watanabe, Nobuyuki Soyama, Hideaki Sakurai
  • Publication number: 20120001298
    Abstract: A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Applicants: STMicroelectronics(Tours) SAS, MITSUBISHI MATERIALS CORPORATION
    Inventors: Hideaki Sakurai, Toshiaki Watanabe, Nobuyuki Soyama, Guillaume Guegan
  • Publication number: 20100044831
    Abstract: A multi-layer capacitor of staggered construction is formed of one or more layers having tapered sidewall(s). The edge(s) of the capacitor film(s) can be etched to have a gentle slope, which can improve adhesion of the overlying layers and provide more uniform film thickness. The multi-layer capacitor can be used in various applications such as filtering and decoupling.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Applicant: STMicroelectronics (Tours) SAS
    Inventor: Guillaume Guegan
  • Publication number: 20040131762
    Abstract: A method for manufacturing a capacitor on a single-crystal silicon substrate, comprising the steps of:
    Type: Application
    Filed: December 18, 2003
    Publication date: July 8, 2004
    Inventors: Philippe Vigie, Guillaume Guegan