Patents by Inventor Guizhen Zhang

Guizhen Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104048
    Abstract: A transmitting apparatus includes a signal generation circuit and an adjustment circuit. The signal generation circuit is configured to send, to a receiving apparatus, a serial data signal that carries a training sequence and valid data, where the training sequence is used to train a skew or an equalization of the serial data signal, and the valid data is used to detect an amplitude of the serial data signal. The adjustment circuit is configured to receive indication information from the receiving apparatus, and adjust a transmission parameter of the serial data signal based on the indication information, where the transmission parameter includes at least one of the skew, the equalization, or the amplitude.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: Bingzhao Zhang, Yanqin Chen, Zhaohua Qian, Hangzhou Chen, Jiandong Ke, Guizhen Wang, Lijuan Tan
  • Patent number: 10836096
    Abstract: The present invention discloses a method and device of film stepless biaxial tension based on saddle-shaped surface transition.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 17, 2020
    Assignees: South China University of Technology, Guangzhou Huaxinke Intelligent Manufacturing Technology Co., Ltd.
    Inventors: Jinping Qu, Guizhen Zhang
  • Patent number: 10745798
    Abstract: A coated article includes a silver (Ag) based infrared (IR) reflecting layer(s) on a glass substrate that is provided adjacent to and contacting at least one metallic or substantially metallic zinc (Zn) inclusive barrier layer in order to improve chemical durability characteristics of the low-E coating. In certain example embodiments, the silver based layer may be sandwiched between first and second metallic or substantially metallic barrier layers of or including zinc. The IR reflecting layer(s) and zinc based barrier layer(s) are part of a low emissivity (low-E) coating.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 18, 2020
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Brent Boyce, Yiwei Lu, Guowen Ding, Guizhen Zhang, Daniel Lee, Daniel Schweigert, Cesar Clavero, Scott Jewhurst, Minh Le
  • Patent number: 10731244
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one protective metallic or substantially metallic doped silver layer in order to improve chemical durability characteristics of the low-E coating. The silver based IR reflecting layer and adjacent protective doped silver layer are part of a low emissivity (low-E) coating, and may be sandwiched between at least transparent dielectric layers. A barrier layer including Ni and/or Cr may be provided over and directly contacting the protective doped silver layer in order to further improve durability of the low-E coating.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: August 4, 2020
    Assignee: Guardian Glass, LLC
    Inventors: Yiwei Lu, Brent Boyce, Guowen Ding, Scott Jewhurst, Cesar Clavero, Daniel Schweigert, Guizhen Zhang, Daniel Lee
  • Publication number: 20200190657
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one protective metallic or substantially metallic doped silver layer in order to improve chemical durability characteristics of the low-E coating. The silver based IR reflecting layer and adjacent protective doped silver layer are part of a low emissivity (low-E) coating, and may be sandwiched between at least transparent dielectric layers. A barrier layer including Ni and/or Cr may be provided over and directly contacting the protective doped silver layer in order to further improve durability of the low-E coating.
    Type: Application
    Filed: November 18, 2019
    Publication date: June 18, 2020
    Applicant: Guardian Glass, LLC
    Inventors: Yiwei LU, Brent BOYCE, Guowen DING, Scott JEWHURST, Cesar CLAVERO, Daniel SCHWEIGERT, Guizhen ZHANG, Daniel LEE
  • Patent number: 10663038
    Abstract: Provided herein are a transmission method and a device for coaxially outputting autorotation and revolution. The axis of a power output shaft (17) and the axis of a crank of a power input shaft (1) are coincided with each other. The power output shaft (17) revolves around the axis of a main shaft of the power input shaft (1), and the revolution speed equals to the rotation speed of the power input shaft (1). After the superposition of a transition gear train (A) and a K-H-V few-tooth-difference planetary gear train (B), a driving force of the power input shaft (1) enables the power output shaft (17) to generate the autorotation which has the same speed as that of the power input shaft (1) but in the opposite direction, and at the same time, a thrust bearing (19) coaxial with the power output shaft (17) is connected to a thrust bearing (18) coaxial with the main shaft of the power input shaft (1) in series to bear axial loads.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 26, 2020
    Assignees: SOUTH CHINA UNIVERSITY OF TECHNOLOGY, GUANGZHOU HUAXINKE INTELLIGENT MANUFACTURING TECHNOLOGY CO., LTD.
    Inventors: Jinping Qu, Guizhen Zhang
  • Patent number: 10604834
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of nickel, titanium, and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of nickel can be between 5 and 15 wt %. The percentage of titanium can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: March 31, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Muhammad Imran, Jingyu Lao, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu, Guizhen Zhang
  • Patent number: 10584409
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including titanium oxide and at least one additional metal. A doped titanium oxide layer(s) is designed and deposited in a manner so as to be amorphous or substantially amorphous (as opposed to crystalline) in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering and reduce haze. The high index layer may be a transparent dielectric high index layer in preferred embodiments, which may be provided for antireflection purposes and/or color adjustment purposes, in addition to having thermal stability.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 10, 2020
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Guizhen Zhang, Daniel Schweigert, Guowen Ding, Daniel Lee, Cesar Clavero, Scott Jewhurst, Gaurav Saraf, Minh Le, Nestor P. Murphy, Marcus Frank
  • Patent number: 10526692
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including zirconium nitride (e.g., ZrN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: January 7, 2020
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yiwei Lu, Guowen Ding, Cesar Clavero, Daniel Schweigert, Guizhen Zhang, Scott Jewhurst, Daniel Lee
  • Patent number: 10502878
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. In some embodiments, a partially fabricated panel may be provided that includes a substrate, a reflective layer formed over the substrate, and a barrier layer formed over the reflective layer such that the reflective layer is formed between the substrate and the barrier layer. The barrier layer may include a partially oxidized alloy of three or more metals. A first interface layer may be formed over the barrier layer. A top dielectric layer may be formed over the first interface layer. The top dielectric layer may be formed using reactive sputtering in an oxygen containing environment. The first interface layer may prevent further oxidation of the partially oxidized alloy of the three or more metals when forming the top dielectric layer. A second interface layer may be formed over the top dielectric layer.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 10, 2019
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Guowen Ding, Jeremy Cheng, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yongli Xu, Guizhen Zhang
  • Publication number: 20190360088
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including zirconium nitride (e.g., ZrN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Application
    Filed: July 18, 2019
    Publication date: November 28, 2019
    Applicant: GUARDIAN GLASS, LLC
    Inventors: Yiwei LU, Guowen DING, Cesar CLAVERO, Daniel SCHWEIGERT, Guizhen ZHANG, Scott JEWHURST, Daniel Lee
  • Patent number: 10480058
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one protective metallic or substantially metallic doped silver layer in order to improve chemical durability characteristics of the low-E coating. The silver based IR reflecting layer and adjacent protective doped silver layer are part of a low emissivity (low-E) coating, and may be sandwiched between at least transparent dielectric layers. A barrier layer including Ni and/or Cr may be provided over and directly contacting the protective doped silver layer in order to further improve durability of the low-E coating.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 19, 2019
    Assignee: GUARDIAN GLASS, LLC.
    Inventors: Yiwei Lu, Brent Boyce, Guowen Ding, Scott Jewhurst, Cesar Clavero, Daniel Schweigert, Guizhen Zhang, Daniel Lee
  • Patent number: 10479053
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including titanium oxide and at least one additional metal. A doped titanium oxide layer(s) is designed and deposited in a manner so as to be amorphous or substantially amorphous (as opposed to crystalline) in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering and reduce haze. The high index layer may be a transparent dielectric high index layer in preferred embodiments, which may be provided for antireflection purposes and/or color adjustment purposes, in addition to having thermal stability.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 19, 2019
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Guizhen Zhang, Daniel Schweigert, Guowen Ding, Daniel Lee, Cesar Clavero, Scott Jewhurst, Gaurav Saraf, Minh Le, Nestor P. Murphy, Marcus Frank
  • Publication number: 20190276928
    Abstract: A coated article includes a silver (Ag) based infrared (IR) reflecting layer(s) on a glass substrate that is provided adjacent to and contacting at least one metallic or substantially metallic zinc (Zn) inclusive barrier layer in order to improve chemical durability characteristics of the low-E coating. In certain example embodiments, the silver based layer may be sandwiched between first and second metallic or substantially metallic barrier layers of or including zinc. The IR reflecting layer(s) and zinc based barrier layer(s) are part of a low emissivity (low-E) coating.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 12, 2019
    Inventors: Brent BOYCE, Yiwei LU, Guowen DING, Guizhen ZHANG, Daniel LEE, Daniel SCHWEIGERT, Cesar CLAVERO, Scott JEWHURST, Minh LE
  • Patent number: 10392689
    Abstract: Coated articles include two or more functional infrared (IR) reflecting layers optionally sandwiched between at least dielectric layers. The dielectric layers may be of or including silicon nitride or the like. At least one of the IR reflecting layers is of or including zirconium nitride (e.g., ZrN) and at least another of the IR reflecting layers is of or including indium-tin-oxide (ITO).
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 27, 2019
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Yiwei Lu, Guowen Ding, Cesar Clavero, Daniel Schweigert, Guizhen Zhang, Scott Jewhurst, Daniel Lee
  • Publication number: 20190226077
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including titanium oxide and at least one additional metal. A doped titanium oxide layer(s) is designed and deposited in a manner so as to be amorphous or substantially amorphous (as opposed to crystalline) in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering and reduce haze. The high index layer may be a transparent dielectric high index layer in preferred embodiments, which may be provided for antireflection purposes and/or color adjustment purposes, in addition to having thermal stability.
    Type: Application
    Filed: February 4, 2019
    Publication date: July 25, 2019
    Inventors: Guizhen ZHANG, Daniel SCHWEIGERT, Guowen DING, Daniel LEE, Cesar CLAVERO, Scott JEWHURST, Gaurav SARAF, Minh LE, Nestor P. MURPHY, Marcus FRANK
  • Patent number: 10343948
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and a plurality of high refractive index dielectric layers of or including a nitride of Zr and Al. In certain example embodiments, the high refractive index dielectric layers of or including a nitride of Zr and Al may be amorphous or substantially amorphous so as to allow the low-E coating to better withstand optional heat treatment (HT) such as thermal tempering. In certain example embodiments, the low-E coating may be used in applications such as monolithic or insulating glass (IG) window unit, vehicle windows, of the like.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 9, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Guowen Ding, Guizhen Zhang, Daniel Schweigert, Daniel Lee, Scott Jewhurst, Cesar Clavero, Minh Le, Brent Boyce
  • Publication number: 20190203340
    Abstract: A coated article includes a low emissivity (low-E) coating supported by a glass substrate. The low-E coating includes at least one silver (Ag) based infrared (IR) reflecting layer(s) that is provided adjacent to and contacting at least one protective metallic or substantially metallic doped silver layer in order to improve chemical durability characteristics of the low-E coating. The silver based IR reflecting layer and adjacent protective doped silver layer are part of a low emissivity (low-E) coating, and may be sandwiched between at least transparent dielectric layers. A barrier layer including Ni and/or Cr may be provided over and directly contacting the protective doped silver layer in order to further improve durability of the low-E coating.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Yiwei LU, Brent BOYCE, Guowen DING, Scott JEWHURST, Cesar CLAVERO, Daniel SCHWEIGERT, Guizhen ZHANG, Daniel LEE
  • Publication number: 20190184685
    Abstract: A coated article includes a low emissivity (low-E) coating having at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including titanium oxide and at least one additional metal. A doped titanium oxide layer(s) is designed and deposited in a manner so as to be amorphous or substantially amorphous (as opposed to crystalline) in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering and reduce haze. The high index layer may be a transparent dielectric high index layer in preferred embodiments, which may be provided for antireflection purposes and/or color adjustment purposes, in addition to having thermal stability.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 20, 2019
    Inventors: Guizhen Zhang, Daniel Schweigert, Guowen Ding, Daniel Lee, Cesar Clavero, Scott Jewhurst, Gaurav Saraf, Minh Le, Nestor P. Murphy, Marcus Frank
  • Patent number: 10307950
    Abstract: The present invention relates to a volume pulsed deformation plasticating and conveying method and device by an eccentric rotor. The rotation of the eccentric rotor and the rolling of the rotor in the inner cavity of a stator during constant reverse revolutions cause the volume of the material between the eccentric rotor and the stator to periodically change alternatively along the axial direction and the radial direction of the stator, thereby enabling the volume pulsed deformation plasticating and conveying of the material. The volume pulsed deformation plasticating and conveying device consists of a stator, of which the inner cavity comprises multiple alternatingly disposed spiral segments and straight segments, and an eccentric rotor comprising multiple alternatingly disposed eccentric spiral segments and eccentric straight segments. The eccentric rotor is disposed in the inner cavity of the stator.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: June 4, 2019
    Assignees: SOUTH CHINA UNIVERSITY OF TECHNOLOGY, GUANGZHOU HUAZINKE INTELLIGENT MANUFACTURING TECHNOLOGY CO., LTD.
    Inventors: Jinping Qu, Guizhen Zhang, Xiaochun Yin