Patents by Inventor Gunnar Kampf

Gunnar Kampf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210198412
    Abstract: Described herein are processes for producing a polyurethane foam by mixing the following: (a) polymeric MDI with less than 40% by weight content of difunctional MDI and an aliphatic halogenated hydrocarbon compound (d1) composed of 2 to 5 carbon atoms and of at least one hydrogen atom and of at least one fluorine and/or chlorine atom, where the compound (d1) includes at least one carbon-carbon double bond, to give an isocyanate component (A), and reacting with a polyol component (b) to give the polyurethane foam. Also described herein is a polyurethane foam obtainable by said process.
    Type: Application
    Filed: August 8, 2019
    Publication date: July 1, 2021
    Inventors: Josep-Daniel Eslava, Gunnar Kampf, Jan-Michael Dreisoerner, Josep Maria Bringue Campi
  • Patent number: 10472454
    Abstract: The present invention relates to a process for preparing rigid polyurethane foams or rigid polyisocyanurate foams by using certain polyetherester polyols B) based on aromatic dicarboxylic acids, optionally further polyester polyols C), which differ from those of component B), and polyether polyols D), wherein the mass ratio of total components B) and optionally C) to component D) is less than 1.6. The present invention also relates to the rigid foams thus obtainable and to their use for producing sandwich elements having rigid or flexible outer layers. The present invention further relates to the underlying polyol components.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: November 12, 2019
    Assignee: BASF SE
    Inventor: Gunnar Kampf
  • Publication number: 20190153187
    Abstract: Provided herein is a process for preparing a rigid polyisocyanurate foam including reacting a composition (A) including a polyesterol, a blowing agent including formic acid, a catalyst system including at least one trimerization catalyst and at least one polyisocyanate as component (B), wherein composition (A) further includes at least one polyether alcohol prepared by addition of alkylene oxides to toluenediamine. Further provided herein is a rigid polyisocyanurate foam obtained through the process described herein and the use of said rigid polyisocyanurate foam as insulating material.
    Type: Application
    Filed: May 18, 2017
    Publication date: May 23, 2019
    Inventors: Gianpaolo Tomasi, Ludwig Windeler, Gunnar Kampf, Ulrich Gaukesbrink
  • Patent number: 10259906
    Abstract: The present invention relates to polyester polyols obtainable or obtained by esterification of 10 to 70 mol % of at least one compound from the group consisting of terephthalic acid (TPA), dimethyl terephthalate (DMT), polyethylene terephthalate (PET), phthalic anhydride (PA), phthalic acid and isophthalic acid, 0.1 to 30 mol % of one or more fatty acids and/or fatty acid derivatives, 10 to 70 mol % of one or more aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, 5 to 70 mol % of a polyether polyol prepared by alkoxylating an aromatic starter molecule having a functionality of not less than 2, and of 0 to 70 mol % of a tri- or polyol other than the polyether polyol, all based on the total amount of the components used, wherein the amounts used of the components add up to 100 mol %.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: April 16, 2019
    Assignee: BASF SE
    Inventors: Tobias Kaluschke, Gunnar Kampf
  • Publication number: 20170209897
    Abstract: The present invention relates to a process for the production of a composite element. The process includes (i) provision of an outer layer with an uncoated surface and a coated surface coated at least partially with a composition (B) including at least one inorganic material, (ii) treatment of the uncoated surface of the outer layer and (iii) application, to the treated surface of the outer layer, of a composition (Z2) suitable for the production of a polyurethane foam and/or polyisocyanurate foam. The present invention further relates to a composite element obtainable or obtained by a process of the invention, and also to the use of a composite element obtainable or obtained by a process of the invention or of a composite element of the invention as insulation material or in the construction of façades.
    Type: Application
    Filed: July 14, 2015
    Publication date: July 27, 2017
    Applicant: BASF SE
    Inventors: Oliver Clamor, Gunnar Kampf, Andrea Eisenhardt, Erhard Gleinig, Sven Moennig, Sarunas Turcinskas, Dirk Weinrich
  • Publication number: 20160347904
    Abstract: The present invention relates to polyester polyols obtainable or obtained by esterification of 10 to 70 mol % of at least one compound from the group consisting of terephthalic acid (TPA), dimethyl terephthalate (DMT), polyethylene terephthalate (PET), phthalic anhydride (PA), phthalic acid and isophthalic acid, 0.1 to 30 mol % of one or more fatty acids and/or fatty acid derivatives, 10 to 70 mol % of one or more aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, 5 to 70 mol % of a polyether polyol prepared by alkoxylating an aromatic starter molecule having a functionality of not less than 2, and of 0 to 70 mol % of a tri- or polyol other than the polyether polyol, all based on the total amount of the components used, wherein the amounts used of the components add up to 100 mol %.
    Type: Application
    Filed: January 27, 2015
    Publication date: December 1, 2016
    Applicant: BASF SE
    Inventors: Tobias KALUSCHKE, Gunnar KAMPF
  • Patent number: 9475220
    Abstract: The invention relates to an improved process for producing composite elements comprising at least one outer layer and at least one isocyanate-based rigid foam layer by means of a fixed applicator apparatus and in which the flowable starting material comprises the following components: A) at least one polyisocyanate, B) at least one compound which reacts with isocyanate groups to form urethane, C) at least one blowing agent, D) catalysts comprising at least one compound D1) which catalyzes isocyanurate formation and at least one compound D2) which catalyzes polyurethane formation, comprising at least one amino group, and E) optionally auxiliaries and additives, where the manner of use of component A) and of component B) is such that the isocyanate index is at least 180, and where the ratio by weight of the compound D2) to the compound D1) is from 0.75 to 8.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 25, 2016
    Assignee: BASF SE
    Inventors: Olaf Jacobmeier, Gunnar Kampf
  • Patent number: 9353234
    Abstract: The invention relates to rigid polyurethane foams obtainable by reaction of A) organic or modified organic polyisocyanates or mixtures thereof, B) compounds having two or more isocyanate-reactive hydrogen atoms in the presence of C) optionally further polyester polyols, D) optionally polyetherol polyols, E) optionally flame retardants, F) one or more blowing agents, G) catalysts, and H) optionally further auxiliaries and/or additives, wherein component B) comprises the reaction product of a1) 15 to 40 wt % of one or more polyols or polyamines having an average functionality of 2.5 to 8, a2) 2 to 30 wt % of one or more fatty acids and/or fatty acid monoesters, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 31, 2016
    Assignee: BASF SE
    Inventors: Olaf Jacobmeier, Gunnar Kampf, Christian Koenig
  • Patent number: 9334383
    Abstract: A process for producing a rigid polyurethane foam by reacting an organic polyisocyanate with a polyol component containing a compound with at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of a blowing agent, a catalyst, and optionally auxiliaries and additives, wherein the polyol component contains, by weight: 20 to 60 parts of a polyether alcohol having a functionality of 3.5 to 5.5 and a hydroxyl number of from 400 to 550 mg KOH/g; 1 to 20 parts of a polyether alcohol based on an aliphatic amine and having a functionality of 3.5 to 4.5 and a hydroxyl number of 450 to 900 mg KOH/g; 10 to 30 parts of a polyether alcohol and/or aromatic polyester alcohol having functionalities of 1.5 to 3 and a hydroxyl number of from 150 to 450 mg KOH/g; and optionally 1 to 5 parts of water.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: May 10, 2016
    Assignee: BASF SE
    Inventors: Zeljko Tomovic, Olaf Jacobmeier, Gunnar Kampf
  • Patent number: 9062158
    Abstract: The present invention relates to polyester polyols based on aromatic dicarboxylic acids and their use for producing rigid polyurethane foams.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 23, 2015
    Assignee: BASF SE
    Inventors: Lionel Gehringer, Gunnar Kampf, Marco Balbo Block
  • Patent number: 8895636
    Abstract: Rigid polyurethane foams or rigid polyisocyanurate foams with low brittleness are produced by the reaction of polyisocyanate polyetherester polyols based on aromatic dicarboxylic acids obtained by esterification of a dicarboxylic acid composition containing aromatic dicarboxylic acids and aliphatic dicarboxylic acids, fatty acids, aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, and a polyether polyol having a functionality of not less than 2.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: November 25, 2014
    Assignee: BASF SE
    Inventor: Gunnar Kampf
  • Patent number: 8889756
    Abstract: A process for producing rigid polyurethane foams, in which a mixture of one or more high-functionality polyether alcohols having functionalities of from 3.5 to 5.5 and a hydroxyl number of from 350 to 550 mg KOH/g, one or more polyether alcohols based on aliphatic and/or aromatic amines and having functionalities of from 3 to 4 and a hydroxyl number of from 150 to 800 mg KOH/g, an OH-comprising fatty acid ester and, if appropriate, one or more low molecular weight chain extenders and/or crosslinkers having functionalities of from 2 to 3 and a molecular weight Mw of <400 g/mol is used as polyol component, is described. The rigid polyurethane foams obtained have a good surface quality.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 18, 2014
    Assignee: BASF SE
    Inventors: Zeljko Tomovic, Olaf Jacobmeier, Rainer Hensiek, Gunnar Kampf
  • Publication number: 20140272374
    Abstract: The present invention relates to a process for producing composite elements comprising at least one rigid foam layer a) and at least one outer layer b), at least comprising: provision of a flowable starting material a*) and application of the flowable starting material a*) to the outer layer b) by means of a fixed application apparatus c) while the outer layer b) is moved continuously. The starting material a*) here comprises at least one polyisocyanate, at least one polyol, at least one blowing agent, a catalyst composition comprising at least one compound D1) selected from the group consisting of metal carboxylates and N,N?,N?-tris(dimethylaminopropyl)hexahydrotriazine, and at least one compound D2) which catalyzes polyurethane formation and which differs from the compound D1) and comprises at least one amino group, and optionally auxiliaries and additives.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: BASF SE
    Inventors: Olaf JACOBMEIER, Gunnar KAMPF
  • Publication number: 20140227441
    Abstract: The invention relates to an improved process for producing composite elements comprising at least one outer layer and at least one isocyanate-based rigid foam layer by means of a fixed applicator apparatus and in which the flowable starting material comprises the following components: A) at least one polyisocyanate, B) at least one compound which reacts with isocyanate groups to form urethane, C) at least one blowing agent, D) catalysts comprising at least one compound D1) which catalyzes isocyanurate formation and at least one compound D2) which catalyzes polyurethane formation, comprising at least one amino group, and E) optionally auxiliaries and additives, where the manner of use of component A) and of component B) is such that the isocyanate index is at least 180, and where the ratio by weight of the compound D2) to the compound D1) is from 0.75 to 8.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 14, 2014
    Applicant: BASF SE
    Inventors: Olaf JACOBMEIER, Gunnar KAMPF
  • Publication number: 20140094531
    Abstract: A process for producing rigid polyurethane foams or rigid polyisocyanurate foams is provided. The process contains the reaction of polyisocyanate, fatty acid modified polyetherpolyol, polyetherpolyol, optionally flame retardant, blowing agent, catalyst, and optionally further auxiliary and/or admixture agent, wherein the polyetherpolyol is obtained by a process containing reacting orthotolylenediamine and optionally further co-starters with alkylene oxide containing ethylene oxide wherein the ethylene oxide content is more than 20 wt %, and then reacting the reaction product with alkylene oxide containing propylene oxide wherein the 1,2-propylene oxide content is more than 20 wt %, in the presence of a catalyst.
    Type: Application
    Filed: September 24, 2013
    Publication date: April 3, 2014
    Applicant: BASF SE
    Inventors: Gunnar KAMPF, Olaf JACOBMEIER, Tobias KALUSCHKE, Christian KOENIG
  • Publication number: 20130324626
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reaction of A) one or more organic polyisocyanates, B) one or more polyester polyols, C) optionally one or more polyether polyols, D) a flame-retardant mixture, E) further auxiliaries or addition agents, F) one or more blowing agents, and also G) catalysts, wherein said flame-retardant mixture D) comprises d1) 10 to 90 wt %, based on the amount of flame-retardant mixture, of a flame retardant having a boiling point of not more than 220° C., and d2) 10 to 90 wt %, based on the amount of flame-retardant mixture, of a phosphorus-containing flame retardant having a boiling point of above 220° C., wherein said components d1) and d2) total 100 wt %.
    Type: Application
    Filed: May 20, 2013
    Publication date: December 5, 2013
    Applicant: BASF SE
    Inventors: Roland FABISIAK, Gunnar Kampf, Lars Schoen, Olaf Jacobmeier
  • Publication number: 20130324632
    Abstract: The invention relates to polyesterols obtainable by reaction of b1) from 10 to 70 mol % of at least one compound selected from the group consisting of terephthalic acid, dimethyl terephthalate, polyethylene terephthalate, phthalic anhydride, phthalic acid and isophthalic acid, b2) from 0.8 to 4.5 mol % of a fatty acid triglyceride, b3) from 10 to 70 mol % of a diol selected from the group consisting of ethylene glycol, diethylene glycol and polyethylene glycols, b4) from 5 to 50 mol % of a polyether polyol having a functionality above 2, wherein at least 200 mmol of component b4) are used per kg of the polyesterol, wherein the sum total of components b1) to b4) is 100 mol %.
    Type: Application
    Filed: May 20, 2013
    Publication date: December 5, 2013
    Inventors: Olaf JACOBMEIER, Gunnar Kampf
  • Patent number: 8557887
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein the compounds b) having at least two hydrogen atoms which are reactive toward isocyanate groups comprise at least one aromatic polyester alcohol bi), at least one polyether alcohol bii) having a functionality of from 4 to 8 and a hydroxyl number in the range from 300 to 600 mg KOH/g.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 15, 2013
    Assignee: BASF SE
    Inventors: Michael Koesters, Gunnar Kampf, Roland Fabisiak, Olaf Jacobmeier
  • Publication number: 20130251975
    Abstract: The present invention relates to a process for producing rigid polyurethane foams or rigid polyisocyanurate foams by the reaction of at least one polyisocyanate A), polyetherester polyols B) based on aromatic dicarboxylic acids obtainable by esterification of b1) 10 to 70 mol % of a dicarboxylic acid composition comprising b11) 50 to 100 mol %, based on the dicarboxylic acid composition, of one or more aromatic dicarboxylic acids or derivatives thereof, b12) 0 to 50 mol %, based on said dicarboxylic acid composition b1), of one or more aliphatic dicarboxylic acids or derivatives thereof, b2) 2 to 30 mol % of one or more fatty acids and/or fatty acid derivatives, b3) 10 to 70 mol % of one or more aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, b4) 2 to 50 mol % of a polyether polyol having a functionality of not less than 2, prepared by alkoxylating a polyol having a functionality of not less than 2 in the presence of an amine as catalyst, optionally further polyester
    Type: Application
    Filed: March 21, 2013
    Publication date: September 26, 2013
    Applicant: BASF SE
    Inventor: Gunnar KAMPF
  • Publication number: 20130231410
    Abstract: The invention relates to rigid polyurethane foams obtainable by reaction of A) organic or modified organic polyisocyanates or mixtures thereof, B) compounds having two or more isocyanate-reactive hydrogen atoms in the presence of C) optionally further polyester polyols, D) optionally polyetherol polyols, E) optionally flame retardants, F) one or more blowing agents, G) catalysts, and H) optionally further auxiliaries and/or additives, wherein component B) comprises the reaction product of a1) 15 to 40 wt % of one or more polyols or polyamines having an average functionality of 2.5 to 8, a2) 2 to 30 wt % of one or more fatty acids and/or fatty acid monoesters, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Applicant: BASF SE
    Inventors: Olaf JACOBMEIER, Gunnar Kampf, Christian Koenig