Patents by Inventor Gunnar Westin

Gunnar Westin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9982026
    Abstract: The present invention relates to the discovery that mutations in KCNJ5 are associated with adrenal diseases and disorders. The invention includes compositions and methods for the assessment, characterization and treatment of adrenal diseases and disorders, based upon the presence or absence of a KCNJ5 mutation that is associated with an adrenal disease or disorder.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 29, 2018
    Assignee: YALE UNIVERSITY
    Inventors: Richard P. Lifton, Bixiao Zhao, Murim Choi, Goran Akerstrom, Gunnar Westin, Peyman Bjorklund, Per Hellman
  • Publication number: 20140127126
    Abstract: The present invention relates to the discovery that mutations in KCNJ5 are associated with adrenal diseases and disorders. The invention includes compositions and methods for the assessment, characterization and treatment of adrenal diseases and disorders, based upon the presence or absence of a KCNJ5 mutation that is associated with an adrenal disease or disorder.
    Type: Application
    Filed: January 4, 2012
    Publication date: May 8, 2014
    Applicant: Yale University
    Inventors: Richard P. Lifton, Bixiao Zhao, Murim Choi, Goran Akerstrom, Gunnar Westin, Peyman Bjorklund, Per Hellman
  • Patent number: 8372469
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 12, 2013
    Assignee: St. Jude Medical AB
    Inventors: Tom Eriksson, Kenth Nilsson, Anna-Karin Johansson, Karin Lungstrom, Koroush Lashgari, Annika Pohl, Gunnar Westin
  • Publication number: 20120289807
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 15, 2012
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Tom ERIKSSON, Kenth NILSSON, Anna-Karin JOHANSSON, Karin LUNGSTRÖM, Koroush LASHGARI, Annika POHL, Gunnar WESTIN
  • Publication number: 20120282451
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 8, 2012
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Tom ERIKSSON, Kenth NILSSON, Anna-Karin JOHANSSON, Karin LJUNGSTRÖM, Koroush LASHGARI, Annika POHL, Gunnar WESTIN
  • Publication number: 20120276279
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Tom Eriksson, Kenth Nilsson, Anna-Karin Johansson, Karin Lungstrom, Koroush Lashgari, Annika Pohl, Gunnar Westin
  • Patent number: 8246929
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 21, 2012
    Assignee: St. Jude Medical AB
    Inventors: Tom Eriksson, Kenth Nilsson, Anna-Karin Johansson, Karin Ljungström, Koroush Lashgari, Annika Pohl, Gunnar Westin
  • Publication number: 20120028791
    Abstract: A method for manufacturing anatase TiO2 nanoparticles comprises mixing (210) of Ti-containing alkoxide precursors with a solvent into a precursor solution, hydrolyzing (212) the precursor solution to yield a mixture of a fine titanium containing precipitate and the solvent and hydrothermally treating (214) the precipitate at an elevated temperature in a basic medium. The basic medium is provided after the hydrolysis. The basic medium comprises basic amines. A highly active photocatalytic material is thus presented, comprising anatase TiO2 nanoparticles, which have a mean diameter of less than 100 nm and have at least one of a {111}, a {112}, and a {100} crystal face. The material can be tuned for selective carboxylate-surface coordination.
    Type: Application
    Filed: March 24, 2010
    Publication date: February 2, 2012
    Inventors: Lars Österlund, Gunnar Westin, Michael Leideborg
  • Patent number: 8034152
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: October 11, 2011
    Inventors: Gunnar Westin, Annika Pohl, Asa Ekstrand
  • Publication number: 20100227187
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 9, 2010
    Applicant: SUNSTRIP AB
    Inventors: GUNNAR WESTIN, Annika Pohl, Asa Ekstrand
  • Patent number: 7740814
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: June 22, 2010
    Inventors: Gunnar Westin, Annika Pohl, Åsa Ekstrand
  • Publication number: 20090177049
    Abstract: A method for producing a biocompatible material of the formula NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1 includes the steps of a) providing a Na-precursor and a K-precursor for NaxKyNbO3, b) mixing the precursors in solution wherein said precursors first react to form a sol and thereafter a gel, c) heat treating the gel to obtain an oxide of the material NaxKyNbO3, 0?x?0.8, 0.2?y?1, x+y=1. The material can be produced as a film, and the material or film can be provided on the exterior surface of a medical implant that will come into contact with body tissue and/or body fluids upon implantation thereof.
    Type: Application
    Filed: May 31, 2005
    Publication date: July 9, 2009
    Inventors: Tom Eriksson, Kenth Nilsson, Anna-Karin Johansson, Karin Ljungstrom, Koroush Lashgari, Annika Pohl, Gunnar Westin
  • Publication number: 20080227734
    Abstract: A novel mutant form of lrp5 and lrp6 genes, the mutant LRP5 and LRP6 receptor proteins expressed therefrom, and a cell line which expresses the mutant LRP5 and/or LRP6 receptor proteins. Methods of diagnosing, prognosing and treating LRP5 related diseases, specifically hyperthyroidism and parathyroid tumors, and kits suitable for rapid on-site testing. Finally, methods of screening for agents capable of modulating the mutant LRP5 or LRP6 receptor proteins and pharmaceutical compositions comprising the selected agents.
    Type: Application
    Filed: November 24, 2004
    Publication date: September 18, 2008
    Inventors: Gunnar Westin, Peyman Bjorklund, Goran Akerstrom
  • Publication number: 20080146440
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni-Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Application
    Filed: January 3, 2006
    Publication date: June 19, 2008
    Applicant: SUNSTRIP AB
    Inventors: Gunnar Westin, Annika Pohl, Asa Ekstrand
  • Patent number: 6033735
    Abstract: There is disclosed a method of coating cemented carbide inserts at least partly with a layer of at least one iron group metal. When inserts coated with such a layer are brazed to a tool holder, a joint with improved strength is obtained. According to the present method, one or more metal salts of at least one iron group metal containing organic groups are dissolved and complex bound in at least one polar solvent with at least one complex former comprising functional groups in the form of OH or NR.sub.3 (R.dbd.H or alkyl). A soluble carbon source is added to the solution which is subsequently at least partly applied to the cemented carbide inserts by dipping, spraying or painting. The inserts are dried and heat treated in an inert and/or reducing atmosphere. As a result, cemented carbide inserts are obtained at least partly coated with a layer of an iron group metal.
    Type: Grant
    Filed: September 18, 1997
    Date of Patent: March 7, 2000
    Assignee: Sandvik AB
    Inventors: Stefan Ederyd, Enrico Galli, Mats Nygren, Gunnar Westin, Asa Ekstrand
  • Patent number: 5887242
    Abstract: A method of making a hard constituent powder coated with at least one iron group metal, Me, by dissolving and complex binding at least one of Me.sub.n (NO.sub.3).sub.m and Me.sub.n (SO.sub.4).sub.m and other similar Me.sub.n --X.sub.m compounds containing X-groups with low or no carbon content, preferably Me-nitrates, solely or together with one or more metal salts of at least one iron group metal containing organic groups in at least one polar solvent with at least one complex former comprising functional groups in the form of OH or NR.sub.3, (R=H or alkyl). Hard constituent powder is added to the solution. The solvent is evaporated and remaining powder is heat treated in an inert and/or reducing atmosphere. As a result, coated hard constituent powder is obtained which after addition of a pressing agent can be compacted and sintered according to standard practice.
    Type: Grant
    Filed: September 25, 1996
    Date of Patent: March 23, 1999
    Assignee: Sandvik AB
    Inventors: Mats Nygren, Gunnar Westin, .ANG.sa Ekstrand
  • Patent number: 5505902
    Abstract: A method wherein one or more metal salts of at least one iron group metal containing organic groups are dissolved and complex bound in at least one polar solvent with at least one complex former comprising functional groups in the form of OH or NR.sub.3, (RH.dbd.H or alkyl). Hard constituent powder and, optionally, a soluble carbon source are added to the solution. The solvent is evaporated and the remaining powder is heat treated in an inert and/or reducing atmosphere. As a result, coated hard constituent powder is obtained which after addition of a pressing agent can be compacted and sintered according to standard practice to a body containing hard constituents in a binder phase.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: April 9, 1996
    Assignee: Sandvik AB
    Inventors: Udo Fischer, Mats Waldenstrom, Stefan Ederyd, Mats Nygren, Gunnar Westin, Asa Ekstrand