Patents by Inventor Guoliang Tao

Guoliang Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337637
    Abstract: An electromagnetic valve includes a valve body, a valve core, and an electromagnetic drive device. The valve body has an operation chamber, wherein the valve core is movably arranged in the operation chamber. The electromagnetic drive device is arranged in the valve core and is suitable for being electrically connected with a power source. The electromagnetic drive device is arranged, when driving the electromagnetic valve, to provide the valve core with a starting drive so as to drive the valve core to enter a running state. After the valve core is driven to enter the running to state, to provide the valve core with a maintaining drive so as to keep the valve core in the running state.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 2, 2019
    Assignee: NINGBO HOYEA MACHINERY MANUFACTURE CO., LTD.
    Inventors: Guoliang Tao, Feifei Chen, Ce Zhang, Zhidan Weng
  • Publication number: 20170089814
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Application
    Filed: December 15, 2016
    Publication date: March 30, 2017
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Ping LIN, Douglas T. YAMANISHI, George WALKER, Junquan XU, Mingxian HUANG, Guoliang TAO, Lei WU, Xiaobo WANG, Joe OUYANG, Jing CHENG, Jia XU
  • Patent number: 9556485
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: January 31, 2017
    Assignee: AVIVA BIOSCIENCES CORPORATION
    Inventors: Ping Lin, Douglas T. Yamanishi, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Jing Cheng, Jia Xu
  • Publication number: 20160319953
    Abstract: An electromagnetic valve includes a valve body, a valve core, and an electromagnetic drive device. The valve body has an operation chamber, wherein the valve core is movably arranged in the operation chamber. The electromagnetic drive device is arranged in the valve core and is suitable for being electrically connected with a power source. The electromagnetic drive device is arranged, when driving the electromagnetic valve, to provide the valve core with a starting drive so as to drive the valve core to enter a running state. After the valve core is driven to enter the running to state, to provide the valve core with a maintaining drive so as to keep the valve core in the running state.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 3, 2016
    Applicant: Ningbo Hoyea Industrial Control Technology Co., Ltd.
    Inventors: Guoliang TAO, Feifei CHEN, Ce ZHANG, Zhidan WENG
  • Patent number: 9290812
    Abstract: The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 22, 2016
    Assignee: Aviva Biosciences Corporation
    Inventors: Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Jia Xu
  • Publication number: 20160040232
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Application
    Filed: March 2, 2015
    Publication date: February 11, 2016
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Ping LIN, Douglas T. YAMANISHI, George WALKER, Junquan XU, Mingxian HUANG, Guoliang TAO, Lei WU, Xiaobo WANG, Joe OUYANG, Jing CHENG, Jia XU
  • Publication number: 20150185184
    Abstract: The present invention provides a filtration chamber comprising a microfabricated filter enclosed in a housing, wherein the surface of said filter and/or the inner surface of said housing are modified by vapor deposition, sublimation, vapor-phase surface reaction, or particle sputtering to produce a uniform coating; and a method for separating cells of a fluid sample, comprising: a) dispensing a fluid sample into the filtration chamber disclosed herein; and b) providing fluid flow of the fluid sample through the filtration chamber, wherein components of the fluid sample flow through or are retained by the filter based on the size, shape, or deformability of the components.
    Type: Application
    Filed: July 5, 2013
    Publication date: July 2, 2015
    Inventors: Antonio Guia, Douglas T. Yamanishi, Andrea Ghetti, Guoliang Tao, Huimin Tao, Ky Truong, Lei Wu, Xiaobo Wang
  • Patent number: 8986944
    Abstract: The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Jia Xu
  • Patent number: 8986945
    Abstract: Provided are methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells, particularly including debulking that uses a microfabricated filter for filtering samples. The enriched rare cells can be used in a downstream process such as identification, characterization or growth in culture, or in other ways. Also included is a method of determining tumor aggressiveness or the number or proportion of cancer cells in the enriched sample by detecting telomerase activity, nucleic acid or expression after enrichment of rare cells. Also provided is an efficient, rapid method to specifically remove red and white blood cells from a biological sample containing at least one of the cell types, leading to enrichment of rare target cells including circulating tumor (CTC), stromal, mesenchymal, endothelial, fetal, stem, or non-hematopoietic cells et cetera from a blood sample.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 24, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Andrea Ghetti, Wenge Shi, Mengjia Tang, Gioulnar I. Harvie, Huimin Tao, Guoliang Tao, Lei Wu, David Cerny, Jia Xu, Douglas T. Yamanishi
  • Publication number: 20150079677
    Abstract: The present invention includes methods of enriching rare cells, such as cancer cells, from biological samples, such as blood samples. The methods include performing at least one debulking step on a blood sample and selectively removing at least one type undesirable component from the blood sample to obtain a blood sample that is enriched in a rare cell of interest. In some embodiments magnetic beads coupled to specific binding members are used to selectively removed components.
    Type: Application
    Filed: May 28, 2014
    Publication date: March 19, 2015
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Douglas T. YAMANISHI, Paul G. HUJSAK, Sara F. SNYDER, George WALKER, Junquan XU, Mingxian HUANG, Guoliang TAO, Lei WU, Xiaobo WANG, Joe OUYANG, Charina SCHMITIGAL, Jing CHENG, Jia XU
  • Patent number: 8980568
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: March 17, 2015
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Douglas T. Yamanishi, Paul G. Hujsak, Sara F. Snyder, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Charina Schmitigal, Jing Cheng, Elizabeth Kwok, Jia Xu
  • Patent number: 8969021
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: March 3, 2015
    Assignee: AVIVA Biosciences Corporation
    Inventors: Ping Lin, Douglas T. Yamanishi, George Walker, Junquan Xu, Mingxian Huang, Guoliang Tao, Lei Wu, Xiaobo Wang, Joe Ouyang, Jing Cheng, Jia Xu
  • Publication number: 20140087358
    Abstract: The present invention provides methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells. In particular, the present invention includes a debulking step that uses a microfabricated filters for filtering fluid samples and the enriched rare cells can be used in a downstream process such as identifies, characterizes or even grown in culture or used in other ways. The invention also include a method of determining the aggressiveness of the tumor or of the number or proportion of cancer cells in the enriched sample by detecting the presence or amount of telomerase activity or telomerase nucleic acid or telomerase expression after enrichment of rare cells. This invention further provides an efficient and rapid method to specifically remove red blood cells as well as white blood cells from a biological sample.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 27, 2014
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Ping LIN, Andrea GHETTI, Wenge SHI, Mengjia TANG, Gioulnar I. HARVIE, Huimin TAO, Guoliang TAO, Lei WU, David CERNY, Jia XU
  • Publication number: 20140073536
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells, especially tumor cells, from a complex fluid sample such as a blood sample. In particular, the present invention is directed to methods and compositions for detecting a non-hematopoietic cell, e.g., a non-hematopoietic tumor cell, in a blood sample via, inter alia, removing red blood cells (RBCs) from a blood sample using a non-centrifugation procedure, removing white blood cells (WBCs) from said blood sample to enrich a non-hematopoietic cell, if any, from said blood sample; and assessing the presence, absence and/or amount of said enriched non-hematopoietic cell.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 13, 2014
    Inventors: Ping LIN, Douglas T. YAMANISHI, George WALKER, Junquan XU, Mingxian HUANG, Guoliang TAO, Lei WU, Xiaobo WANG, Joe OUYANG, Jing CHENG, Jia XU
  • Publication number: 20140008210
    Abstract: The present invention provides a filtration chamber comprising a microfabricated filter enclosed in a housing, wherein the surface of said filter and/or the inner surface of said housing are modified by vapor deposition, sublimation, vapor-phase surface reaction, or particle sputtering to produce a uniform coating; and a method for separating cells of a fluid sample, comprising: a) dispensing a fluid sample into the filtration chamber disclosed herein; and b) providing fluid flow of the fluid sample through the filtration chamber, wherein components of the fluid sample flow through or are retained by the filter based on the size, shape, or deformability of the components.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 9, 2014
    Inventors: Antonio GUIA, Douglas T. YAMANISHI, Andrea GHETTI, Guoliang TAO, Huimin TAO, Ky TRUONG, Lei WU, Xiaobo WANG
  • Patent number: 8569009
    Abstract: Provided are methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells, particularly including debulking that uses a microfabricated filter for filtering samples. The enriched rare cells can be used in a downstream process such as identification, characterization or growth in culture, or in other ways. Also included is a method of determining tumor aggressiveness or the number or proportion of cancer cells in the enriched sample by detecting telomerase activity, nucleic acid or expression after enrichment of rare cells. Also provided is an efficient, rapid method to specifically remove red and white blood cells from a biological sample containing at least one of the cell types, leading to enrichment of rare target cells including circulating tumor (CTC), stromal, mesenchymal, endothelial, fetal, stem, or non-hematopoietic cells et cetera from a blood sample.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: October 29, 2013
    Assignee: Aviva Biosciences Corporation
    Inventors: Ping Lin, Andrea Ghetti, Wenge Shi, Mengjia Tang, Gioulnar I. Harvie, Huimin Tao, Guoliang Tao, Lei Wu, David Cerny, Jia Xu
  • Publication number: 20120228386
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicant: Aviva Biosciences Corporation
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20100260984
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 14, 2010
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITALBIO CORPORATION
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7811768
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 12, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7776543
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: August 17, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang