Patents by Inventor Guobin Luo

Guobin Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101980
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Daniel MAZUR, Sihong CHEN, Peter VANDER HORN, Eileen TOZER, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN
  • Patent number: 11866740
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Life Technologies Corporation
    Inventors: Daniel Mazur, Peter B. Vander Horn, Eileen Tozer, Sihong Chen, Guobin Luo, Joshua Shirley, Kevin Heinemann
  • Publication number: 20230193223
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: September 16, 2022
    Publication date: June 22, 2023
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Publication number: 20220315917
    Abstract: Provided are methods for preparing a library of target nucleic acid sequences, as well as compositions and uses therefor. Methods comprise contacting a nucleic acid sample with a plurality of adaptors capable of amplification of one or more target nucleic acid sequences under conditions wherein the target nucleic acid(s) undergo a first amplification; digesting the resulting first amplification products; repairing the digested target amplicons; and amplifying the repaired products in a second amplification, thereby producing a library of target nucleic acid sequence. Each of the plurality of adaptor compositions comprise a handle and a targeted nucleic acid sequence and optionally one or more tag sequences. Provided methods may be carried out in a single, addition only workflow reaction, allowing for rapid production of highly multiplexed targeted libraries, optionally including unique tag sequences. Resulting library compositions are useful for a variety of applications, including sequencing applications.
    Type: Application
    Filed: May 10, 2021
    Publication date: October 6, 2022
    Inventors: Mark ANDERSEN, Daniel MAZUR, Sihong CHEN, Guobin LUO, Xinzhan PENG
  • Patent number: 11447756
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: September 20, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Publication number: 20220162573
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Application
    Filed: December 20, 2021
    Publication date: May 26, 2022
    Inventors: Peter VANDER HORN, Theo NIKIFOROV, Guobin LUO, Mindy LANDES, Daniel MAZUR, Eileen TOZER, Tommie LINCECUM
  • Patent number: 11208636
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 28, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lincecum
  • Publication number: 20210284976
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: May 7, 2021
    Publication date: September 16, 2021
    Inventors: Daniel MAZUR, Peter B. VANDER HORN, Eileen TOZER, Sihong CHEN, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN
  • Publication number: 20210214787
    Abstract: A method for depositing particles on a surface includes receiving a plurality of particles, a particle of the plurality of particles having a polymer matrix conjugated to nucleic acid strands, exposing the plurality of particles to a solution; and applying the plurality of particles to a surface following exposing the plurality of particles to the solution, particles of the plurality of particles depositing on the surface. The solution includes a magnesium salt in a range of 30 mM to 500 mM, a potassium salt in a range of 0.8 M to 1.0 M, a buffering agent in a range of 150 mM to 500 mM, and a surfactant in a range of 0.05% to 0.5%.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 15, 2021
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Guobin LUO, Marina SEDOVA, David LIGHT, Ryan JONES, Mohammad ALANJARY
  • Patent number: 11008612
    Abstract: Provided herein are systems and methods for nucleotide incorporation reactions. The systems comprise polymerases having altered nucleotide incorporation kinetics and are linked to an energy transfer donor moiety, and nucleotide molecules linked with at least one energy transfer acceptor moiety. The donor and acceptor moieties undergo energy transfer when the polymerase and nucleotide are proximal to each other during nucleotide binding and/or nucleotide incorporation. As the donor and acceptor moieties undergo energy transfer, they generate an energy transfer signal which can be associated with nucleotide binding or incorporation. Detecting a time sequence of the generated signals, or the change in the signals, can be used to determine the order of the incorporated nucleotides, and can therefore be used to deduce the sequence of the target molecule.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 18, 2021
    Assignee: Life Technologies Corporation
    Inventors: Joseph Beechem, Theo Nikiforov, Vi-En Choong, Xinzhan Peng, Guobin Luo, Cheng-Yao Chen, Michael Previte
  • Patent number: 11001814
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 11, 2021
    Assignee: Life Technologies Corporation
    Inventors: Daniel Mazur, Peter Vander Horn, Eileen Tozer, Sihong Chen, Guobin Luo, Joshua Shirley, Kevin Heinemann
  • Patent number: 11001836
    Abstract: Provided are methods for preparing a library of target nucleic acid sequences, as well as compositions and uses therefor. Methods comprise contacting a nucleic acid sample with a plurality of adaptors capable of amplification of one or more target nucleic acid sequences under conditions wherein the target nucleic acid(s) undergo a first amplification; digesting the resulting first amplification products; repairing the digested target amplicons; and amplifying the repaired products in a second amplification, thereby producing a library of target nucleic acid sequence. Each of the plurality of adaptor compositions comprise a handle and a targeted nucleic acid sequence and optionally one or more tag sequences. Provided methods may be carried out in a single, addition only workflow reaction, allowing for rapid production of highly multiplexed targeted libraries, optionally including unique tag sequences. Resulting library compositions are useful for a variety of applications, including sequencing applications.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 11, 2021
    Assignee: Life Technologies Corporation
    Inventors: Mark Andersen, Daniel Mazur, Sihong Chen, Guobin Luo, Xinzhan Peng
  • Publication number: 20200277580
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Application
    Filed: April 16, 2020
    Publication date: September 3, 2020
    Inventors: Peter VANDER HORN, Theo NIKIFOROV, Guobin LUO, Mindy LANDES, Daniel MAZUR, Eileen TOZER, Tommie LINCECUM
  • Publication number: 20200231948
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 23, 2020
    Inventors: Peter VANDER HORN, Cheng-Yao CHEN, Guobin LUO, Michael PREVITE, Jamshid TEMIROV, Theo NIKIFOROV, Zhaohui ZHOU, Hongye SUN, Yufang WANG, Stefanie Yukiko NISHIMURA, Hongyi WANG, Marian PERIS, Barnett ROSENBLUM, Michael PHELAN
  • Publication number: 20200149105
    Abstract: An aqueous reagent solution includes a magnesium salt in a range of 30 mM to 500 mM, a potassium salt in a range of 0.8 M to 1.0 M, a buffering agent in a range of 150 mM to 500 mM, and a surfactant in a range of 0.05% to 0.5%.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Guobin LUO, Marina Sedova, David Light, Ryan Jones, Mohammad Alanjary
  • Patent number: 10633641
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragment thereof are provided that allow for nucleic acid amplification. In one aspect, the disclosure relates to modified polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In some aspects, the disclosure relates to modified polymerases useful for the generation of nucleic acid libraries or nucleic acid templates for use in various downstream processes. In some aspects, the disclosure relates to the identification of homologous amino acid mutations that can be transferred across classes or families of polymerases to provide novel polymerases with altered catalytic properties. In some aspects, the disclosure provides modified polymerases having enhanced catalytic properties as compared to a reference polymerase.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Theo Nikiforov, Guobin Luo, Mindy Landes, Daniel Mazur, Eileen Tozer, Tommie Lloyd Lincecum
  • Patent number: 10597642
    Abstract: Provided herein are compositions and systems for use in polymerase-dependent, nucleotide transient-binding methods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide polymorphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complementary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 24, 2020
    Assignee: Life Technologies Corporation
    Inventors: Peter Vander Horn, Cheng-Yao Chen, Guobin Luo, Michael Previte, Jamshid Temirov, Theo Nikiforov, Zhaohui Zhou, Hongye Sun, Yufang Wang, Stefanie Yukiko Nishimura, Hongyi Wang, Marian Peris, Barnett Rosenblum, Michael Phelan
  • Publication number: 20200017846
    Abstract: In some embodiments, the disclosure relates generally to methods as well as related compositions, systems, kits and apparatus comprising linking proteins to target compounds and/or to locations of interest using tethers. For example, the tether can be used to link the protein to a target compound, for example, to link an enzyme to a substrate. Similarly, the tether can be used to link the protein at or near a desired location on a surface. In one group of embodiments, the tether includes a polynucleotide and the target compound or location on the surface includes another polynucleotide that is capable of hybridizing to the tether. In such embodiments, the tether can be used to link the protein to the target compound or location using nucleic acid hybridization.
    Type: Application
    Filed: August 15, 2019
    Publication date: January 16, 2020
    Inventors: John DAVIDSON, Theo NIKIFOROV, Guobin LUO
  • Patent number: 10533220
    Abstract: A method of sequencing a nucleic acid strand includes receiving particles having nucleic acid strands coupled to a polymer matrix, exposing the particles to a solution including a condensing agent, and applying the particles to a surface, the particles depositing on the surface.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: January 14, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Guobin Luo, Marina Sedova, David Light, Ryan Jones, Mohammad Alanjary
  • Publication number: 20190270974
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Inventors: Daniel MAZUR, Peter VANDER HORN, Eileen TOZER, Sihong CHEN, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN