Patents by Inventor Guojun Liu

Guojun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8912083
    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 16, 2014
    Assignee: NanoGram Corporation
    Inventors: Guojun Liu, Uma Srinivasan, Shivkumar Chiruvolu
  • Patent number: 8895962
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 25, 2014
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Publication number: 20140162445
    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: NanoGram Corporation
    Inventors: Guojun Liu, Uma Srinivasan, Shivkumar Chiruvolu
  • Patent number: 8749413
    Abstract: A digital correction circuit for a pipelined analog-to-digital converter (ADC) is disclosed. Compared to the conventional digital correction circuit which uses adders to perform operations in ADC digital correction part and hence needs a rather long operation time, the digital correction circuit of this invention can reduce the time needed in operations in the finial digital correction circuits and thus can optimize operation time, by allocating the operations to a plurality of pipeline stages of second sub-circuits configured to synchronize digital codes, each of which can perform part of the operations only with NAND gates, NOR gates, phase inverters and D-type flip-flops, without needing to use adders.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 10, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Hongwei Zhu, Yanjuan Liu, Min Tang, Guojun Liu
  • Publication number: 20140151706
    Abstract: Silicon nanoparticle inks provide a basis for the formation of desirable materials. Specifically, composites have been formed in thin layers comprising silicon nanoparticles embedded in an amorphous silicon matrix, which can be formed at relatively low temperatures. The composite material can be heated to form a nanocrystalline material having crystals that are non-rod shaped. The nanocrystalline material can have desirable electrical conductive properties, and the materials can be formed with a high dopant level. Also, nanocrystalline silicon pellets can be formed from silicon nanoparticles deposited form an ink in which the pellets can be relatively dense although less dense than bulk silicon. The pellets can be formed from the application of pressure and heat to a silicon nanoparticle layer.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: NanoGram Corporation
    Inventors: Guojun Liu, Shivkumar Chiruvolu, Weidong Li, Uma Srinivasan
  • Publication number: 20140146427
    Abstract: This present inversion relates to a detection system and detection method of distributed generation islanding based on power frequency carrier. The system includes a power frequency carrier signal generating device near the terminal power distribution substation, a power frequency carrier signal detection device in distributed power grid; the power frequency carrier signal generating device is connected to the substation bus through a signal coupling transformer; the power frequency carrier signal generating device is connected with signal coupling transformer though phase A, B C live wires and the N middle wire, that results in the signal can be send by anyone signal phase, any two phases parallel way or three phases parallel way. The power frequency carrier signal detection device is connected with the low voltage power network though phase A, B and C live wires and the N middle wire.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 29, 2014
    Applicants: STATE GRID CORPORATION OF CHINA, CHINA ELECTRIC POWER RESEARCH INSTITUTE
    Inventors: Biyao Huang, Jianqi Li, Guojun Liu, Zhihui Wang, Nan Quan, Xiaofeng Qu, Tao Zhao, Licheng Wang
  • Publication number: 20130330920
    Abstract: A high-frequency, hydrogen-based radio-frequency (RF) plasma is used to reduce a metal oxide and other contaminant disposed in an aperture that is formed in an ultra-low k dielectric material. Because the frequency of the plasma is at least about 40 MHz and the primary gas in the plasma is hydrogen, metal oxide can be advantageously removed without damaging the dielectric material.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Guojun Liu, Xianmin Tang, Anantha Subramani, Wei W. Wang
  • Publication number: 20130257635
    Abstract: A digital correction circuit for a pipelined analog-to-digital converter (ADC) is disclosed. Compared to the conventional digital correction circuit which uses adders to perform operations in ADC digital correction part and hence needs a rather long operation time, the digital correction circuit of this invention can reduce the time needed in operations in the finial digital correction circuits and thus can optimize operation time, by allocating the operations to a plurality of pipeline stages of second sub-circuits configured to synchronize digital codes, each of which can perform part of the operations only with NAND gates, NOR gates, phase inverters and D-type flip-flops, without needing to use adders.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventors: Hongwei Zhu, Yanjuan Liu, Min Tang, Guojun Liu
  • Publication number: 20130216068
    Abstract: A silicon based capacitive microphone includes a printed circuit board, a shell mounted on the printed circuit board and forming a receiving space together with the printed board, a chamber support located on top of the printed circuit board and received in the receiving space, a transducer unit and a controlling chip respectively mounted on the chamber support, wherein the chamber support forms a first chamber together with the printed board, the chamber support includes an opening, the transducer unit is provided with a second chamber and covers the opening, the second chamber communicates with the first chamber via the opening.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 22, 2013
    Inventor: Guojun Liu
  • Publication number: 20130196507
    Abstract: Methods for depositing metal layers, and more specifically TaN layers, using CVD and ALD techniques are provided. In one or more embodiments, the method includes sequentially exposing a substrate to a metal precursor, or more specifically a tantalum precursor, followed by a high frequency plasma.
    Type: Application
    Filed: January 16, 2013
    Publication date: August 1, 2013
    Inventors: Paul F. Ma, Guojun Liu, Annamalai Lakshmanan, Dien-Yeh Wu, Anantha K. Subramani
  • Publication number: 20130105806
    Abstract: Silicon nanoparticle inks provide a basis for the formation of desirable materials. Specifically, composites have been formed in thin layers comprising silicon nanoparticles embedded in an amorphous silicon matrix, which can be formed at relatively low temperatures. The composite material can be heated to form a nanocrystalline material having crystals that are non-rod shaped. The nanocrystalline material can have desirable electrical conductive properties, and the materials can be formed with a high dopant level. Also, nanocrystalline silicon pellets can be formed from silicon nanoparticles deposited form an ink in which the pellets can be relatively dense although less dense than bulk silicon. The pellets can be formed from the application of pressure and heat to a silicon nanoparticle layer.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventors: Guojun Liu, Shivkumar Chiruvolu, Weidong Li, Uma Srinivasan
  • Publication number: 20120296029
    Abstract: Fluorine-containing multifunctional microspheres and applications thereof are provided. There are provided multifunctional microspheres comprising polymer chains having a first portion and a second portion, wherein the first portion is anchored to the surface of the multifunctional microsphere via grafting, crosslinking or a combination thereof, and the second portion comprises at least one fluorinated group and at least one reactive functional group capable of forming a covalent bond with an adhesive, and uses thereof to prepare amphiphobic coatings on material surfaces. Also provided are multifunctional microspheres comprising two or more different types of such polymer chains, wherein the relative proportions of the different polymer chains may be tuned during preparation of the multifunctional microspheres.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 22, 2012
    Inventors: Guojun Liu, Dean Xiong
  • Publication number: 20120264884
    Abstract: Provided are amphiphobic block copolymers, methods for preparing amphiphobic block copolymers, and applications thereof. Amphiphobic block copolymers can be used to prepare amphiphobic coatings on material surfaces, such as glass, printing paper or fabric. Amphiphobic block copolymers can also be used to coat particles, e.g., silica nanoparticles, which are then used to coat material surfaces. Such coated particles and uses thereof are also provided herein.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Inventors: Guojun Liu, Dean Xiong
  • Publication number: 20120193769
    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
    Type: Application
    Filed: May 23, 2011
    Publication date: August 2, 2012
    Inventors: Guojun Liu, Uma Srinivasan, Shivkumar Chiruvolu
  • Publication number: 20120024229
    Abstract: Magnetrons for use in physical vapor deposition (PVD) chambers and methods of use thereof are provided herein. In some embodiments, an apparatus may include a support member having an axis of rotation; a plurality of first magnets coupled to the support member on a first side of the axis of rotation and having a first polarity oriented in a first direction perpendicular to the support member; and a second magnet coupled to the support member on a second side of the axis of rotation opposite the first side and having a second polarity oriented in a second direction opposite the first direction. In some embodiments, the apparatus is capable of forming a magnetic field including one or more magnetic nulls that modulate local plasma uniformity in a physical vapor deposition (PVD) chamber.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 2, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: GUOJUN LIU, XIANMIN TANG, QIAN LUO, YONG CAO
  • Publication number: 20110318905
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 29, 2011
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Publication number: 20100136769
    Abstract: Germanium-based polymers are described. In one embodiment, a germanium-based polymer includes a structure given by the formula: [GeR]n, wherein n is a non-negative integer that is at least one, and R is selected from a wide variety of groups, such as alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, and so forth. Also described are methods of forming germanium-based polymers, methods of forming nanoparticles from germanium-based polymers, methods of forming nanostructured materials from germanium-based polymers, nanoparticles formed from germanium-based polymers, nanostructured materials formed from germanium-based polymers, and devices formed from germanium-based polymers.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 3, 2010
    Inventors: MAJID KESHAVARZ, Guojun Liu
  • Publication number: 20100099590
    Abstract: There is disclosed an oil-dispersible nanoparticle comprising metal-binding functional groups on its surface. Preferably, the nanoparticle is derived from substantially spherical polymer micelles of (A1-yCy)nBm diblocks or (A1-yCy)nBm(A1-yCy)n triblocks. A method for producing the nanoparticles is also described. The nanoparticles are particularly useful as lubricant additives.
    Type: Application
    Filed: December 12, 2006
    Publication date: April 22, 2010
    Inventor: Guojun Liu
  • Patent number: 6654470
    Abstract: A sensor circuit for use in measuring concentrations of an analyte in a fluid is comprised of a BAW sensor, a voltage variable capacitor connected to the sensor, an input which supplies a bias warping dc voltage to the voltage variable capacitor, and a resonant oscillator circuit. The resonant oscillator circuit detects the fundamental frequency of the sensor and produces a resonant signal frequency. The bias warping dc voltage applied to the voltage variable capacitor warps the resonant frequency of the circuit away from inharmonic noise.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: November 25, 2003
    Assignee: Fisher-Rosemount Systems, Inc.
    Inventors: John P. Dilger, Guojun Liu
  • Publication number: 20030096888
    Abstract: A composite material highly suitable for use in over-current protection devices comprising a semi-crystalline polymer which has in its matrix finely dispersed carbon black material that has been chemically reacted with a grafting agent, and has the grafting agent covalently attached to the carbon black. The grafting agent includes a lipophilic portion or moiety that renders the carbon black linked to the grafting agent highly compatible with the polymer matrix. The auto thermal height (ATH) of the composite materials is significantly enhanced and a slight positive temperature coefficient is still observed with rising temperature after the transition temperature of the composite material has been reached.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Inventors: Farhad Adib, Chechian Ko, Guojun Liu, Zengrong Zhang