Patents by Inventor Guomin Mao

Guomin Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11355325
    Abstract: Methods and apparatus for plasma processing are provided herein. For example, apparatus can include a system for plasma processing including a remote plasma source including a supply terminal configured to connect to a power source and an output configured to deliver RF power to a plasma block of the remote plasma source for creating a plasma and a controller configured to control operation of the remote plasma source based on a measured input power at the supply terminal.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: June 7, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ramesh Gopalan, Hemant Mungekar, Guomin Mao, Rongping Wang, Teryl Pratt
  • Patent number: 11328900
    Abstract: A plasma ignition circuit includes a transformer having a primary coil configured to couple an RF power supply. A first secondary coil is configured to couple a remote plasma source (RPS), and a second secondary coil. The plasma ignition circuit further includes a control switch having an input configured to couple the second secondary coil and an output configured to capacitively couple the RPS and a switch controller. The switch controller is configured to upon sensing a secondary RF voltage applied to the second secondary coil in response to an RF voltage applied by RF power supply to the primary coil, enable the control switch to capacitively apply the secondary RF voltage to the RPS to ignite a plasma within the RPS. Upon sensing a drop in plasma impedance when the plasma is ignited, disable the control switch to discontinue applying the secondary RF voltage to the RPS.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Teryl Pratt, Rongping Wang, Guomin Mao, Andy Chuang
  • Publication number: 20210375601
    Abstract: Methods and apparatus for plasma processing are provided herein. For example, apparatus can include a system for plasma processing including a remote plasma source including a supply terminal configured to connect to a power source and an output configured to deliver RF power to a plasma block of the remote plasma source for creating a plasma and a controller configured to control operation of the remote plasma source based on a measured input power at the supply terminal.
    Type: Application
    Filed: December 17, 2020
    Publication date: December 2, 2021
    Inventors: Ramesh GOPALAN, Hemant MUNGEKAR, Guomin MAO, Rongping WANG, Teryl PRATT
  • Publication number: 20210375701
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, apparatus can include a system for processing a substrate, comprising: a remote plasma source including a supply terminal configured to connect to a power source and an output configured to deliver RF power to a plasma block of the remote plasma source for creating a plasma; and a controller connected to the supply terminal of the remote plasma source and configured to determine, based on a predictive model of the remote plasma source, whether a power at the supply terminal is equal to a predetermined threshold during processing of a substrate, wherein the predictive model includes a correlation of remote plasma performance with delivered RF power at the output, and to control the processing of the substrate based on a determination of the predetermined threshold being met to control processing of the substrate.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Inventors: Ramesh GOPALAN, Hemant MUNGEKAR, Guomin MAO, Rongping WANG, Teryl PRATT
  • Publication number: 20200294769
    Abstract: A plasma ignition circuit includes a transformer having a primary coil configured to couple an RF power supply. A first secondary coil is configured to couple a remote plasma source (RPS), and a second secondary coil. The plasma ignition circuit further includes a control switch having an input configured to couple the second secondary coil and an output configured to capacitively couple the RPS and a switch controller. The switch controller is configured to upon sensing a secondary RF voltage applied to the second secondary coil in response to an RF voltage applied by RF power supply to the primary coil, enable the control switch to capacitively apply the secondary RF voltage to the RPS to ignite a plasma within the RPS. Upon sensing a drop in plasma impedance when the plasma is ignited, disable the control switch to discontinue applying the secondary RF voltage to the RPS.
    Type: Application
    Filed: February 17, 2020
    Publication date: September 17, 2020
    Inventors: Teryl PRATT, Rongping WANG, Guomin MAO, Andy CHUANG
  • Patent number: 9183853
    Abstract: Approaches for a magnetic write head having a stacked coil architecture. Embodiments utilize the better process control capability available with thin films' thicknesses, compared to the control capability of vertical gap-filling processes, which provides for better scalability to shorter yoke length magnetic write heads, which are faster at writing data bits than are magnetic write heads having a longer yoke length.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 10, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Quan-chiu Harry Lam, Edward Hin Pong Lee, Guomin Mao, Yi Zheng
  • Patent number: 9099126
    Abstract: A magnetic head, according to one embodiment, includes a sensor structure extending from an air bearing surface end thereof in a stripe height direction, the sensor structure having sidewalls on opposite sides thereof, the sidewalls extending between a top and a bottom of the sensor structure, the sidewalls extending in the stripe height direction, wherein a spacing between the sidewalls in a track width direction along the top of the sensor structure is about constant therealong in the stripe height direction.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: August 4, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Guomin Mao, Yi Zheng
  • Patent number: 8984741
    Abstract: A method for manufacturing a magnetic read sensor allows for the construction of a very narrow trackwidth sensor while avoiding problems related to mask liftoff and shadowing related process variations across a wafer. The process involves depositing a plurality of sensor layers and forming a first mask structure. The first mask structure has a relatively large opening that encompasses a sensor area and an area adjacent to the sensor area where a hard bias structure can be deposited. A second mask structure is formed over the first mask structure and includes a first portion that is configured to define a sensor dimension and a second portion that is over the first mask structure in the field area.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 24, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Yi Zheng, Guomin Mao, Hicham M. Sougrati, Xiaozhong Dang
  • Publication number: 20150036244
    Abstract: A magnetic head, according to one embodiment, includes a sensor structure extending from an air bearing surface end thereof in a stripe height direction, the sensor structure having sidewalls on opposite sides thereof, the sidewalls extending between a top and a bottom of the sensor structure, the sidewalls extending in the stripe height direction, wherein a spacing between the sidewalls in a track width direction along the top of the sensor structure is about constant therealong in the stripe height direction.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Guomin Mao, Yi Zheng
  • Publication number: 20140353276
    Abstract: The present invention generally relates to methods for forming a sensor structure utilizing a shallow and narrow hard mask stencil. In one embodiment, a sensor structure is formed by utilizing a four-layered hard mask stencil. The four-layered hard mask stencil includes a first mask layer, a second mask layer disposed over the first hard mask, a third mask layer disposed over the second mask layer, and a forth mask layer disposed over the third mask layer. In another embodiment, a sensor structure is formed by utilizing a three-layered hard mask stencil. The three-layered hard mask stencil includes a first mask layer, a second mask layer disposed over the first mask layer, and a third mask layer disposed over the second mask layer. The sensor structure is formed with a two-step chemical mechanical planarization (CMP) process.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Guomin MAO, Hicham Moulay SOUGRATI, Yi ZHENG
  • Patent number: 8889018
    Abstract: A method for manufacturing a magnetic write pole using a mask that includes a multi-layer hard mask. The multi-layer hard mask hard mask includes a first hard mask layer that is constructed of a Si containing material that can be spun on and a second hard mask material that is deposited by a deposition process such as sputter deposition. The first hard mask layer has optical properties that allow it to function well as a bottom anti-reflective coating (BARC) and also has optical properties that match well with an underlying image transfer layer. The second hard mask material has good selectivity for reactive ion etching so that it functions well as a RIE hard mask.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: November 18, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Guomin Mao, Yi Zheng
  • Patent number: 8889019
    Abstract: The present invention generally relates to methods for forming a sensor structure utilizing a shallow and narrow hard mask stencil. In one embodiment, a sensor structure is formed by utilizing a four-layered hard mask stencil. The four-layered hard mask stencil includes a first mask layer, a second mask layer disposed over the first hard mask, a third mask layer disposed over the second mask layer, and a forth mask layer disposed over the third mask layer. In another embodiment, a sensor structure is formed by utilizing a three-layered hard mask stencil. The three-layered hard mask stencil includes a first mask layer, a second mask layer disposed over the first mask layer, and a third mask layer disposed over the second mask layer. The sensor structure is formed with a two-step chemical mechanical planarization (CMP) process.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 18, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Guomin Mao, Hicham Moulay Sougrati, Yi Zheng
  • Publication number: 20140313614
    Abstract: Approaches for a magnetic write head having a stacked coil architecture. Embodiments utilize the better process control capability available with thin films' thicknesses, compared to the control capability of vertical gap-filling processes, which provides for better scalability to shorter yoke length magnetic write heads, which are faster at writing data bits than are magnetic write heads having a longer yoke length.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Quan-chiu Harry Lam, Edward Hin Pong Lee, Guomin Mao, Yi Zheng
  • Patent number: 8828248
    Abstract: Write heads may be formed by reactive ion etching (RIE) a dielectric mask and then reactive ion etching a polymeric underlayer. The first RIE affects the second RIE. The first portion of the first RIE process is performed with a ratio of CF4 to CHF3 between about 1.3 to 2, a gas flow ratio of CF4 to He between 2.2 and about 3, and a ratio of RF source power to RF bias power between about 10 and about 16. The second portion of the first RIE process is performed with a ratio of CF4 to CHF3 between about 0.3 to 0.8, a gas flow ratio of CF4 to He between about 1.2 and about 1.8, and a ratio of RF source power to RF bias between about 22 to 28. With the above parameters, the dielectric mask can be formed with minimized damage on the underlayer.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 9, 2014
    Assignee: HGST Netherlands B.V
    Inventors: Guomin Mao, Satyanarayana Myneni, Aron Pentek, Xiaoye Zhao
  • Patent number: 8801944
    Abstract: A method for manufacturing a magnetic write pole of a magnetic write head that achieves improved write pole definition reduced manufacturing cost and improves ease of photoresist mask re-work. The method includes the use of a novel bi-layer hard mask beneath a photoresist mask. The bi-layer mask includes a layer of silicon dielectric, and a layer of carbon over the layer of silicon dielectric. The carbon layer acts as an anti-reflective coating layer that is unaffected by the photolithographic patterning process used to pattern the write pole and also acts as an adhesion layer for resist patterning. In the event that the photoresist patterning is not within specs and a mask re-work must be performed, the bi-layer mask can remain intact and need not be removed and re-deposited. In addition, the low cost and ease of use silicon dielectric and carbon reduce manufacturing cost and increase throughput.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 12, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Guomin Mao, Yi Zheng
  • Publication number: 20140217060
    Abstract: Write heads may be formed by reactive ion etching (RIE) a dielectric mask and then reactive ion etching a polymeric underlayer. The first RIE affects the second RIE. The first portion of the first RIE process is performed with a ratio of CF4 to CHF3 between about 1.3 to 2, a gas flow ratio of CF4 to He between 2.2 and about 3, and a ratio of RF source power to RF bias power between about 10 and about 16. The second portion of the first RIE process is performed with a ratio of CF4 to CHF3 between about 0.3 to 0.8, a gas flow ratio of CF4 to He between about 1.2 and about 1.8, and a ratio of RF source power to RF bias between about 22 to 28. With the above parameters, the dielectric mask can be formed with minimized damage on the underlayer.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Guomin MAO, Satyanarayana MYNENI, Aron PENTEK, Xiaoye ZHAO
  • Patent number: 8796152
    Abstract: A method for manufacturing a magnetic sensor that allows the sensor to be constructed with a very narrow track width and with smooth, well defined side walls. A tri-layer mask structure is deposited over a series of sensor layers. The tri-layer mask structure includes an under-layer, a Si containing hard mask deposited over the under-layer and a photoresist layer deposited over the Si containing hard mask. The photoresist layer is photolithographically patterned to define a photoresist mask. A first reactive ion etching is performed to transfer the image of the photoresist mask onto the Si containing hard mask. The first reactive ion etching is performed in a chemistry that includes CF4, CHF3, O2, and He. A second reactive ion etching is then performed in an oxygen chemistry to transfer the image of the Si containing hard mask onto the under-layer, and an ion milling is performed to define the sensor.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 5, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Guomin Mao, Aron Pentek, Thao Pham, Yi Zheng
  • Patent number: 8795538
    Abstract: A method according to one embodiment includes depositing a dielectric hard mask layer above a polymer mask under-layer; forming a photoresist mask above the hard mask layer; transferring the image of the photoresist mask onto the hard mask layer using reactive ion etching, thereby defining a hard mask; determining that a critical dimension bias of the hard mask is within or outside a specification; and changing a level of an input source power used during a subsequent reactive ion etching step to move the critical dimension bias towards a target critical dimension bias when the critical dimension bias of the hard mask is outside the specification. Additional embodiments are also disclosed.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 5, 2014
    Assignee: HGST Netherlands B.V.
    Inventor: Guomin Mao
  • Publication number: 20140170774
    Abstract: A method for manufacturing a magnetic sensor that allows the sensor to be constructed with a very narrow track width and with smooth, well defined side walls. A tri-layer mask structure is deposited over a series of sensor layers. The tri-layer mask structure includes an under-layer, a Si containing hard mask deposited over the under-layer and a photoresist layer deposited over the Si containing hard mask. The photoresist layer is photolithographically patterned to define a photoresist mask. A first reactive ion etching is performed to transfer the image of the photoresist mask onto the Si containing hard mask. The first reactive ion etching is performed in a chemistry that includes CF4, CHF3, O2, and He. A second reactive ion etching is then performed in an oxygen chemistry to transfer the image of the Si containing hard mask onto the under-layer, and an ion milling is performed to define the sensor.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Guomin Mao, Aron Pentek, Thao Pham, Yi Zheng
  • Publication number: 20140144872
    Abstract: A method for manufacturing a magnetic write pole of a magnetic write head that achieves improved write pole definition reduced manufacturing cost and improves ease of photoresist mask re-work. The method includes the use of a novel bi-layer hard mask beneath a photoresist mask. The bi-layer mask includes a layer of silicon dielectric, and a layer of carbon over the layer of silicon dielectric. The carbon layer acts as an anti-reflective coating layer that is unaffected by the photolithographic patterning process used to pattern the write pole and also acts as an adhesion layer for resist patterning. In the event that the photoresist patterning is not within specs and a mask re-work must be performed, the bi-layer mask can remain intact and need not be removed and re-deposited. In addition, the low cost and ease of use silicon dielectric and carbon reduce manufacturing cost and increase throughput.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Guomin Mao, Yi Zheng