Patents by Inventor GUOR-CHAUR JUNG

GUOR-CHAUR JUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11552382
    Abstract: A radio frequency (RF) loopback substrate or printed circuit board (PCB) which contains receive and transmit antennas located on the bottom of the loopback substrate which are aligned with the complementary transmit and receive antennas on an antenna on package (AOP) device under test. The loopback substrate receive and transmit antennas are coupled to each other. The device under test contacts are driven by a conventional tester, which causes RF circuitry in the integrated circuit to drive an AOP transmit antenna. The corresponding loopback substrate receive antenna receives the RF signal from the AOP transmit antenna and provides it to the loopback substrate transmit antennas. The integrated circuit package AOP receive antennas then receive the RF signals from the loopback substrate transmit antennas. The signals at the integrated circuit package AOP receive antennas are monitored through the integrated circuit contacts to monitor the received RF signals.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: January 10, 2023
    Assignee: Texas Instmments Incorporated
    Inventors: Meysam Moallem, Guor-Chaur Jung, Brian P. Ginsburg
  • Publication number: 20210050652
    Abstract: A radio frequency (RF) loopback substrate or printed circuit board (PCB) which contains receive and transmit antennas located on the bottom of the loopback substrate which are aligned with the complementary transmit and receive antennas on an antenna on package (AOP) device under test. The loopback substrate receive and transmit antennas are coupled to each other. The device under test contacts are driven by a conventional tester, which causes RF circuitry in the integrated circuit to drive an AOP transmit antenna. The corresponding loopback substrate receive antenna receives the RF signal from the AOP transmit antenna and provides it to the loopback substrate transmit antennas. The integrated circuit package AOP receive antennas then receive the RF signals from the loopback substrate transmit antennas. The signals at the integrated circuit package AOP receive antennas are monitored through the integrated circuit contacts to monitor the received RF signals.
    Type: Application
    Filed: November 4, 2020
    Publication date: February 18, 2021
    Inventors: Meysam MOALLEM, Guor-Chaur JUNG, Brian P. GINSBURG
  • Patent number: 10862192
    Abstract: A radio frequency (RF) loopback substrate or printed circuit board (PCB) which contains receive and transmit antennas located on the bottom of the loopback substrate which are aligned with the complementary transmit and receive antennas on an antenna on package (AOP) device under test. The loopback substrate receive and transmit antennas are coupled to each other. The device under test contacts are driven by a conventional tester, which causes RF circuitry in the integrated circuit to drive an AOP transmit antenna. The corresponding loopback substrate receive antenna receives the RF signal from the AOP transmit antenna and provides it to the loopback substrate transmit antennas. The integrated circuit package AOP receive antennas then receive the RF signals from the loopback substrate transmit antennas. The signals at the integrated circuit package AOP receive antennas are monitored through the integrated circuit contacts to monitor the received RF signals.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 8, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Meysam Moallem, Guor-Chaur Jung, Brian P. Ginsburg
  • Publication number: 20200194871
    Abstract: A radio frequency (RF) loopback substrate or printed circuit board (PCB) which contains receive and transmit antennas located on the bottom of the loopback substrate which are aligned with the complementary transmit and receive antennas on an antenna on package (AOP) device under test. The loopback substrate receive and transmit antennas are coupled to each other. The device under test contacts are driven by a conventional tester, which causes RF circuitry in the integrated circuit to drive an AOP transmit antenna. The corresponding loopback substrate receive antenna receives the RF signal from the AOP transmit antenna and provides it to the loopback substrate transmit antennas. The integrated circuit package AOP receive antennas then receive the RF signals from the loopback substrate transmit antennas. The signals at the integrated circuit package AOP receive antennas are monitored through the integrated circuit contacts to monitor the received RF signals.
    Type: Application
    Filed: April 11, 2019
    Publication date: June 18, 2020
    Inventors: Meysam MOALLEM, Guor-Chaur JUNG, Brian P. GINSBURG
  • Patent number: 10429493
    Abstract: A method includes: generating, via a testing signal source, a test transmission signal; receiving the test transmission signal at an input port of a socket device having the input port, an input coupler, a divider, a combiner, an output coupler and an output port; providing, via the input coupler, an input signal based on the test transmission signal; providing, via the divider, portions of the input signal to each of respective inputs of m receivers of a transceiver having n transmitters and the m receivers; combining, via the combiner, signals provided at the respective outputs of the n transmitters into a combined output signal; providing a coupled output signal to the input coupler; providing a measured output signal to the output port; providing, via the output port, the measured output signal to a receiving signal measuring device; and testing, via the receiving signal measuring device, the measured output signal.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: October 1, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Brian P. Ginsburg, Guor-Chaur Jung
  • Publication number: 20160334503
    Abstract: A method includes; generating, via a testing signal source, a test transmission signal; receiving the test transmission signal at an input port of a socket device having the input port, an input coupler, a divider, a combiner, an output coupler and an output port; providing, via the input coupler, an input signal based on the test transmission signal; providing, via the divider, portions of the input signal to each of respective inputs of in receivers of a transceiver having n transmitters and the m receivers; combining, via the combiner, signals provided at the respective outputs of the n transmitters into a combined output signal; providing a coupled output signal to the input coupler; providing a measured output signal to the output port; providing, via the output port, the measured output signal to a receiving signal measuring device; and testing, via the receiving signal measuring device, the measured output signal.
    Type: Application
    Filed: January 25, 2016
    Publication date: November 17, 2016
    Inventors: BRIAN P. GINSBURG, GUOR-CHAUR JUNG