Patents by Inventor Guorong Chen
Guorong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11935137Abstract: A method for distributing an equity reward for federated learning based on an equity theory includes the following steps: applying Adams' equity theory to federated learning, analyzing, by a participant, all factors invested in a federated task comprehensively, then giving an expected reward for this task, calculating, by the task publisher, the reputation of the participant; participating, by the participant, in each round of a training task using a local data to evaluate data contribution, model contribution, and a waiting-time allowance of the participant, then combining contribution results of the three factors to evaluate the contribution of the participant; after a global model converges, dynamically adjusting weights of the three factors according to an objective function of the equity reward, with a goal that an actual reward of the participant is as close as possible to the expected reward, and obtaining and distributing the actual reward of the participant.Type: GrantFiled: July 24, 2023Date of Patent: March 19, 2024Assignee: BEIJING JIAOTONG UNIVERSITYInventors: Wei Wang, Guorong Chen, Pengrui Liu, Xiaoting Lyu, Xiangrui Xu, Chao Li, Li Duan, Dawei Zhang, Jiqiang Liu, Yi Jin, Yidong Li
-
Publication number: 20240046372Abstract: A method for distributing an equity reward for federated learning based on an equity theory includes the following steps: applying Adams' equity theory to federated learning, analyzing, by a participant, all factors invested in a federated task comprehensively, then giving an expected reward for this task, calculating, by the task publisher, the reputation of the participant; participating, by the participant, in each round of a training task using a local data to evaluate data contribution, model contribution, and a waiting-time allowance of the participant, then combining contribution results of the three factors to evaluate the contribution of the participant; after a global model converges, dynamically adjusting weights of the three factors according to an objective function of the equity reward, with a goal that an actual reward of the participant is as close as possible to the expected reward, and obtaining and distributing the actual reward of the participant.Type: ApplicationFiled: July 24, 2023Publication date: February 8, 2024Applicant: BEIJING JIAOTONG UNIVERSITYInventors: Wei WANG, Guorong CHEN, Pengrui LIU, Xiaoting LYU, Xiangrui XU, Chao LI, Li DUAN, Dawei ZHANG, Jiqiang LIU, Yi JIN, Yidong LI
-
Patent number: 11631838Abstract: Disclosed herein is a composite particulate comprising a plurality of active material particles; and a single graphene sheet or a plurality of graphene sheets surrounds the plurality of active material particles and a surface of the composite particulate, wherein a single graphene sheet or a plurality of graphene sheets provides an electron-conducting path.Type: GrantFiled: January 8, 2020Date of Patent: April 18, 2023Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Patent number: 11597809Abstract: A method for preparing an aerogel comprising nano attapulgite and phenolic aldehyde and a method for preparing abrasion-resistant vehicle tire. 80-100 weight distributions of rubber, 3-8 weight distributions of SiO2.nH2O, 3-6 weight distributions of an anti-aging agent, 3-4 weight distributions of a heat stabilizer, 3-5 weight distributions of a compatibilizing agent, and 3-12 weight distributions of the aerogel comprising the nano attapulgite and the phenolic aldehyde is selected as a raw material of the abrasion-resistant rubber material to prepare rubber composite material for the abrasion-resistant vehicle tire.Type: GrantFiled: February 8, 2022Date of Patent: March 7, 2023Assignee: Xiamen UniversityInventors: Lizong Dai, Xiaohui Liu, Hesheng Cao, Guorong Chen, Weiang Luo, Conghui Yuan, Birong Zeng, Yiting Xu
-
Patent number: 11505684Abstract: A vehicle tire rubber composite material, raw materials of the vehicle tire rubber composite material comprise the following components by weight: 30-40 weight distributions of solution-polymerized styrene-butadiene rubber, 35-55 weight distributions of rare earth butadiene rubber, 10-30 weight distributions of phenyl modified natural rubber, 5-14 weight distributions of polyurethane elastomer, 3-9 weight distributions of acetylene carbon black, 2-5 weight distributions of multifunctional abrasion-resistant flame retardant Cu@HNT@MoS2-PZE, 3-6 weight distributions of elastic fiber, 1-3 weight distributions of heat stabilizer, 2-3 weight distributions of silane coupling agent, 1-2.5 weight distributions of anti-scorching agent, 1-2.5 weight distributions of turpentine oil, and 4-6 weight distributions of accelerator.Type: GrantFiled: February 8, 2022Date of Patent: November 22, 2022Assignees: Xiamen University, Cheng Shin Tire (Xiamen) Co., Ltd.Inventors: Lizong Dai, Jing Hong, Hesheng Cao, Guorong Chen, Weiang Luo, Conghui Yuan, Birong Zeng, Yiting Xu
-
Publication number: 20220251345Abstract: A vehicle tire rubber composite material, raw materials of the vehicle tire rubber composite material comprise the following components by weight: 30-40 weight distributions of solution-polymerized styrene-butadiene rubber, 35-55 weight distributions of rare earth butadiene rubber, 10-30 weight distributions of phenyl modified natural rubber, 5-14 weight distributions of polyurethane elastomer, 3-9 weight distributions of acetylene carbon black, 2-5 weight distributions of multifunctional abrasion-resistant flame retardant Cu@HNT@MoS2-PZE, 3-6 weight distributions of elastic fiber, 1-3 weight distributions of heat stabilizer, 2-3 weight distributions of silane coupling agent, 1-2.5 weight distributions of anti-scorching agent, 1-2.5 weight distributions of turpentine oil, and 4-6 weight distributions of accelerator.Type: ApplicationFiled: February 8, 2022Publication date: August 11, 2022Inventors: Lizong DAI, Jing HONG, Hesheng CAO, Guorong CHEN, Weiang LUO, Conghui YUAN, Birong ZENG, Yiting XU
-
Publication number: 20220251323Abstract: A method for preparing an aerogel comprising nano attapulgite and phenolic aldehyde and a method for preparing abrasion-resistant vehicle tire. 80-100 weight distributions of rubber, 3-8 weight distributions of SiO2.nH2O, 3-6 weight distributions of an anti-aging agent, 3-4 weight distributions of a heat stabilizer, 3-5 weight distributions of a compatibilizing agent, and 3-12 weight distributions of the aerogel comprising the nano attapulgite and the phenolic aldehyde is selected as a raw material of the abrasion-resistant rubber material to prepare rubber composite material for the abrasion-resistant vehicle tire.Type: ApplicationFiled: February 8, 2022Publication date: August 11, 2022Inventors: Lizong DAI, Xiaohui Liu, Hesheng Cao, Guorong Chen, Weiang Luo, Conghui Yuan, Birong zeng, Yiting Xu
-
Patent number: 11283104Abstract: A dual electroplating cell comprising: (a) an electrolyte component containing therein ions of a first metal; (b) a porous cathode current collector having surface areas to capture and store metal ions directly thereon, wherein the cathode current collector has a specific surface area greater than 100 m2/g that is in direct contact with said electrolyte; (c) a porous anode current collector having surface areas to capture and store metal ions thereon, wherein the anode current collector has a specific surface area greater than 100 m2/g that is in direct contact with the electrolyte; (d) a porous separator disposed between the anode and the cathode; and (e) an ion source of the first metal disposed in the anode current collector or the cathode current collector and in electronic contact therewith to obtain an open circuit voltage (OCV) from 0.3 volts to 3.5 volts when the cell is made.Type: GrantFiled: June 1, 2012Date of Patent: March 22, 2022Assignee: Global Graphene Group, Inc.Inventors: Guorong Chen, Yanbo Wang, Qing Fang, Bor Z. Jang, Aruna Zhamu
-
Patent number: 11104752Abstract: Disclosed is a method for inducing orderly arrangement by means of polymer crystallization, and the use thereof in preparing a composite film. Firstly, monodisperse PS-DVB nano-microspheres of different sizes are prepared by means of soap-free emulsion polymerization; the PS-DVB nano-microspheres prepared above are used as raw material, and PEG aqueous solutions with different concentrations are added to induce an orderly arrangement of the nano-microspheres by means of solution-state PEG crystallization; and characterized by using scanning electron microscopy and polarizing microscopy. The method is simple in terms of operation and is widely applicable. By further modifying the orderly arrangement of the nano-microspheres, the composite material can be applied to different fields.Type: GrantFiled: July 5, 2019Date of Patent: August 31, 2021Assignee: Xiamen UniversityInventors: Lizong Dai, Jihong Zhu, Shangyue Chen, Yuntong Li, Conghui Yuan, Guorong Chen, Birong Zeng, Yiting Xu, Wei'ang Luo
-
Patent number: 11046832Abstract: The present disclosure discloses a method of manufacturing silicon dioxide nanoparticles modified by a polymer containing phosphorus and nitrogen, which relates to organic/inorganic hybrid nanoparticles, dispersing SiO2 in an organic solvent, then adding THPS, stirring, and finally adding p-phenylenediamine, reacting, centrifuging, washing, and drying to obtain silicon dioxide nanoparticles modified by a polymer containing phosphorus and nitrogen. The silicon dioxide nanoparticles modified by the polymer containing phosphorus and nitrogen have effects in flame retardancy, strengthening effect of polymer matrixes, and are expected to be widely used in the halogen-free synergistic flame retardancy of polymer materials.Type: GrantFiled: September 11, 2019Date of Patent: June 29, 2021Assignee: Xiamen UniversityInventors: Lizong Dai, Chao Liu, Guorong Chen, Jiamei Huang, Zhongyu Li, Conghui Yuan, Yiting Xu, Birong Zeng, Wei′ang Luo
-
Publication number: 20200185704Abstract: Disclosed herein is a composite particulate comprising a plurality of active material particles; and a single graphene sheet or a plurality of graphene sheets surrounds the plurality of active material particles and a surface of the composite particulate, wherein a single graphene sheet or a plurality of graphene sheets provides an electron-conducting path.Type: ApplicationFiled: January 8, 2020Publication date: June 11, 2020Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Patent number: 10559811Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.Type: GrantFiled: January 11, 2017Date of Patent: February 11, 2020Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Publication number: 20200002503Abstract: The present disclosure discloses a method of manufacturing silicon dioxide nanoparticles modified by a polymer containing phosphorus and nitrogen, which relates to organic/inorganic hybrid nanoparticles, dispersing SiO2 in an organic solvent, then adding THPS, stirring, and finally adding p-phenylenediamine, reacting, centrifuging, washing, and drying to obtain silicon dioxide nanoparticles modified by a polymer containing phosphorus and nitrogen. The silicon dioxide nanoparticles modified by the polymer containing phosphorus and nitrogen have effects in flame retardancy, strengthening effect of polymer matrixes, and are expected to be widely used in the halogen-free synergistic flame retardancy of polymer materials.Type: ApplicationFiled: September 11, 2019Publication date: January 2, 2020Inventors: Lizong DAI, Chao LIU, Guorong CHEN, Jiamei HUANG, Zhongyu LI, Conghui YUAN, Yiting XU, Birong ZENG, Wei'ang LUO
-
Publication number: 20190330398Abstract: Disclosed is a method for inducing orderly arrangement by means of polymer crystallization, and the use thereof in preparing a composite film. Firstly, monodisperse PS-DVB nano-microspheres of different sizes are prepared by means of soap-free emulsion polymerization; the PS-DVB nano-microspheres prepared above are used as raw material, and PEG aqueous solutions with different concentrations are added to induce an orderly arrangement of the nano-microspheres by means of solution-state PEG crystallization; and characterized by using scanning electron microscopy and polarizing microscopy. The method is simple in terms of operation and is widely applicable. By further modifying the orderly arrangement of the nano-microspheres, the composite material can be applied to different fields.Type: ApplicationFiled: July 5, 2019Publication date: October 31, 2019Inventors: Lizong DAI, Jihong ZHU, Shangyue CHEN, Yuntong LI, Conghui YUAN, Guorong CHEN, Birong ZENG, Yiting XU, Wei'ang LUO
-
Patent number: 9923206Abstract: Disclosed is an electrode material comprising a phthalocyanine compound encapsulated by a protective material, preferably in a core-shell structure with a phthalocyanine compound core and a protective material shell. Also disclosed is a rechargeable lithium cell comprising: (a) an anode; (b) a cathode comprising an encapsulated or protected phthalocyanine compound as a cathode active material; and (c) a porous separator disposed between the anode and the cathode and/or an electrolyte in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life, the best cathode specific capacity, and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.Type: GrantFiled: September 10, 2012Date of Patent: March 20, 2018Assignee: Nanotek Instruments, Inc.Inventors: Guorong Chen, Bor Z. Jang, Aruna Zhamu
-
Publication number: 20170200938Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.Type: ApplicationFiled: January 11, 2017Publication date: July 13, 2017Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Patent number: 9673447Abstract: A method of operating a lithium-ion cell comprising (a) a cathode comprising a carbon or graphitic material having a surface area to capture and store lithium thereon; (b) an anode comprising an anode active material; (c) a porous separator disposed between the two electrodes; (d) an electrolyte in ionic contact with the two electrodes; and (e) a lithium source disposed in at least one of the two electrodes to obtain an open circuit voltage (OCV) from 0.5 volts to 2.8 volts when the cell is made; wherein the method comprises: (A) electrochemically forming the cell from the OCV to either a first lower voltage limit (LVL) or a first upper voltage limit (UVL), wherein the first LVL is no lower than 0.1 volts and the first UVL is no higher than 4.6 volts; and (B) cycling the cell between a second LVL and a second UVL.Type: GrantFiled: April 12, 2012Date of Patent: June 6, 2017Assignee: Nanotek Instruments, Inc.Inventors: Guorong Chen, Yanbo Wang, Qing Fang, Xiqing Wang, Aruna Zhamu, Bor Z. Jang
-
Patent number: 9558860Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.Type: GrantFiled: September 10, 2010Date of Patent: January 31, 2017Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
-
Patent number: 9484160Abstract: A unitary graphene-based current collector in a battery or capacitor. The current collector is or contains a unitary graphene layer that is composed of closely packed and chemically bonded parallel graphene planes having an inter-graphene plane spacing of 0.335 to 0.40 nm and an oxygen content less than 5% by weight (more typically 0.001% to 1%), an average grain size larger than 5 ?m (more typically >100 ?m; some as large as >cm), a physical density higher than 1.8 g/cm3, and is obtained from heat-treating a graphene oxide gel at a temperature higher than 100° C. (typically and preferably from 1,000 to 3,000° C.). Such an integrated or unitary graphene entity is compatible with essentially all electrolytes commonly used in batteries and supercapacitors.Type: GrantFiled: September 23, 2013Date of Patent: November 1, 2016Assignee: Nanotek Instruments, Inc.Inventors: Aruna Zhamu, Bor Z Jang, Guorong Chen
-
Patent number: D998454Type: GrantFiled: July 14, 2021Date of Patent: September 12, 2023Inventors: Guorong Chen, Guorui Chen