Patents by Inventor Guozhu YU

Guozhu YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9133293
    Abstract: Provided is a copolymer rubber, comprising a copolymer having a star-shaped block structure (SIB-PA)n-X, wherein SIB is a block comprising styrene, butadiene, and isoprene as constituent monomers; PA is a block comprising butadiene or isoprene as a constituent monomer; X is the residue of at least one coupling agent; and n=2-4. Also provided is a process for preparing the copolymer rubber and use thereof.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 15, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Guozhu Yu, Lin Xu, Xinhe Kang, Nini Wang, Hui Liu, Chuanqing Li
  • Patent number: 9051407
    Abstract: Disclosed herein are polybutadiene grafted isoprene rubber, processes for preparing polybutadiene grafted isoprene rubber, mixed compositions and vulcanized forms thereof.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 9, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Aimin Liang, Chuanqing Li, Wei Sun, Jie Zhang, Lin Xu, Ximing Xie, Guozhu Yu, Jiangwei Zhao, Yishuang Xin, Liangliang Yang, Jinmei Tan, Sufang Ouyang
  • Patent number: 8940838
    Abstract: The method for preparation of polyisoprene includes conducting polymerization reaction of isoprene in a first organic solvent under the presence of rare earth catalyst I and rare earth catalyst II, to obtain polyisoprene with bimodal molecular weight distribution, wherein the polymerization reaction conditions are controlled to ensure the peak molecular weight of the high molecular weight component fraction in the polyisoprene is 1×106-2×106 and the peak molecular weight of the low molecular weight component fraction is 2×105-4×105, and the weight ratio of content of the high molecular weight component fraction to the low molecular weight component fraction is 1-25:1. The molecular weight distribution of the polyisoprene obtained with the method provided is bimodal distribution; therefore, the polyisoprene not only has the mechanical properties of polyisoprene with high molecular weight, but also has the processability of polyisoprene with low molecular weight.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: January 27, 2015
    Assignees: China Petroleum & Chemcial Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Aimin Liang, Jie Zhang, Jiangwei Zhao, Chuanqing Li, Lin Xu, Ximing Xie, Guozhu Yu, Sufang Ouyang, Jinmei Tan, Liangliang Yang, Wei Sun, Yishuang Xin
  • Publication number: 20140058044
    Abstract: Disclosed herein are polybutadiene grafted isoprene rubber, processes for preparing polybutadiene grafted isoprene rubber, mixed compositions and vulcanized forms thereof.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicants: Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation, China Petroleum & Chemical Corporation
    Inventors: Aimin LIANG, Chuanqing LI, Wei SUN, Jie ZHANG, Lin XU, Ximing XIE, Guozhu YU, Jiangwei ZHAO, Yishuang XIN, Liangliang YANG, Jinmei TAN, Sufang OUYANG
  • Patent number: 8604143
    Abstract: Disclosed are catalyst compositions for isoprene polymerization formed from components comprising (A) at least one titanium halide; (B) at least one organic aluminum compound comprising at least one alkyl aluminum of formula AlR3, wherein each of the three Rs is independently chosen from linear and branched C1-6 alkyl groups; and (C) at least one electron donor comprising at least one polyether compound of formula (I) and/or at least one tetrahydro-furfuryl ether compound of formula (II). Also disclosed are processes for preparation of the catalyst compositions and processes using the catalyst compositions for isoprene polymerization.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 10, 2013
    Assignees: China Petroleum & Chemical Corporation, Sinopec Beijing Research Institute of Chemical Industry
    Inventors: Chao Wang, Chuanqing Li, Guozhu Yu, Aimin Liang, Jie Zhang, Lin Xu, Pengfei Lv, Huiling Liu
  • Publication number: 20130317176
    Abstract: The method for preparation of polyisoprene includes conducting polymerization reaction of isoprene in a first organic solvent under the presence of rare earth catalyst I and rare earth catalyst II, to obtain polyisoprene with bimodal molecular weight distribution, wherein the polymerization reaction conditions are controlled to ensure the peak molecular weight of the high molecular weight component fraction in the polyisoprene is 1×106-2×106 and the peak molecular weight of the low molecular weight component fraction is 2×105-4×105, and the weight ratio of content of the high molecular weight component fraction to the low molecular weight component fraction is 1-25:1. The molecular weight distribution of the polyisoprene obtained with the method provided is bimodal distribution; therefore, the polyisoprene not only has the mechanical properties of polyisoprene with high molecular weight, but also has the processability of polyisoprene with low molecular weight.
    Type: Application
    Filed: May 28, 2013
    Publication date: November 28, 2013
    Applicants: Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, China Petroleum & Chemical Corporation
    Inventors: Aimin LIANG, Jie Zhang, Jiangwei Zhao, Chuanqing Li, Lin Xu, Ximing Xie, Guozhu Yu, Sufang Ouyang, Jinmei Tan, Liangliang Yang, Wei Sun, Yishuang Xin
  • Publication number: 20120108773
    Abstract: Disclosed are catalyst compositions for isoprene polymerization formed from components comprising (A) at least one titanium halide; (B) at least one organic aluminum compound comprising at least one alkyl aluminum of formula AlR3, wherein each of the three Rs is independently chosen from linear and branched C1-6 alkyl groups; and (C) at least one electron donor comprising at least one polyether compound of formula (I) and/or at least one tetrahydro-furfuryl ether compound of formula (II). Also disclosed are processes for preparation of the catalyst compositions and processes using the catalyst compositions for isoprene polymerization.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Inventors: Chao Wang, Chuanqing Li, Guozhu Yu, Aimin Liang, Jie Zhang, Lin Xu, Pengfei Lv, Huiling Liu
  • Publication number: 20110319568
    Abstract: Provided is a copolymer rubber, comprising a copolymer having a star-shaped block structure (SIB-PA)n-X, wherein SIB is a block comprising styrene, butadiene, and isoprene as constituent monomers; PA is a block comprising butadiene or isoprene as a constituent monomer; X is the residue of at least one coupling agent; and n=2?4. Also provided is a process for preparing the copolymer rubber and use thereof.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 29, 2011
    Inventors: Guozhu YU, Lin XU, Xinhe KANG, Nini WANG, Hui LIU, Chuanqing LI