Patents by Inventor Guqiao Ding

Guqiao Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069027
    Abstract: A use of nitrogen-doped carbon fluorescent quantum dots in preparation of aerobic glycolysis detection products is provided. The carbon-nitrogen fluorescent quantum dots are selected from one or more of C3N4 quantum dots, C2N quantum dots, and C3N quantum dots. The aerobic glycolysis detection products are reagents, based on a final volume of the reagents, the reagents comprise the carbon-nitrogen fluorescent quantum dots with a final concentration of 1 ?g/mL-1 mg/mL. The present disclosure realizes fluorescent labeling of NAD+ in living cells using the carbon-nitrogen fluorescent quantum dots, thus achieving fluorescent labeling and imaging of cells having aerobic glycolysis, which has the advantages of low cost, high efficiency, rapidity, and high accuracy.
    Type: Application
    Filed: December 28, 2021
    Publication date: February 29, 2024
    Applicants: SHANGHAI NINTH PEOPLE'S HOSPITAL, SHANGHAI JIAOTONG UNIVERSITY SCHOOL OF MEDICINE, SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: JIPENG LI, SIWEI YANG, GUQIAO DING, HUIFANG ZHOU, XIANQUN FAN
  • Patent number: 10017878
    Abstract: The present invention provides a growth method of grapheme, which at least comprises the following steps: S1: providing an insulating substrate, placing the insulating substrate in a growth chamber; S2: heating the insulating substrate to a preset temperature, and introducing a gas containing catalytic element into the growth chamber; S3: feeding carbon source into the growth chamber and growing a graphene thin film on the insulating substrate. The present invention adopts a catalytic manner of introducing catalytic element, and rapid grows a high quality graphene on the insulating substrate, which avoids the transition process of the graphene, enables to improve the production yield of the graphene, reduces the growth cost of the graphene, and thus the mass production can be facilitated. The graphene grown by the present invention may be applied in the field of novel graphene electronic devices, graphene transparent conducting film, transparent conducting coating and the like.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: July 10, 2018
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Haomin Wang, Shujie Tang, Guangyuan Lu, Tianru Wu, Da Jiang, Guqiao Ding, Xuefu Zhang, Hong Xie, Xiaoming Xie, Mianheng Jiang
  • Publication number: 20180002831
    Abstract: The present invention provides a growth method of grapheme, which at least comprises the following steps: S1: providing an insulating substrate, placing the insulating substrate in a growth chamber; S2: heating the insulating substrate to a preset temperature, and introducing a gas containing catalytic element into the growth chamber; S3: feeding carbon source into the growth chamber and growing a graphene thin film on the insulating substrate. The present invention adopts a catalytic manner of introducing catalytic element, and rapid grows a high quality graphene on the insulating substrate, which avoids the transition process of the graphene, enables to improve the production yield of the graphene, reduces the growth cost of the graphene, and thus the mass production can be facilitated. The graphene grown by the present invention may be applied in the field of novel graphene electronic devices, graphene transparent conducting film, transparent conducting coating and the like.
    Type: Application
    Filed: March 26, 2015
    Publication date: January 4, 2018
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: HAOMIN WANG, SHUJIE TANG, GUANGYUAN LU, TIANRU WU, DA JIANG, GUQIAO DING, XUEFU ZHANG, HONG XIE, XIAOMING XIE, MIANHENG JIANG
  • Patent number: 9850571
    Abstract: The invention belongs to the technical field of inorganic compounds, and particularly, relates to a method for directly preparing graphene by taking CBr4 as a source material and using methods such as molecular-beam epitaxy (MBE) or chemical vapor deposition (CVD). A method for preparing graphene comprises the following steps: selecting a proper material as a substrate; directly depositing a catalyst and CBr4 on a surface of the substrate; and performing annealing treatment on the sample obtained through deposition. Compared with other technologies, an innovative point of the method in the invention is that the catalyst and CBr4 source can be quantitatively and controllably deposited on any substrate, and the catalyst and CBr4 source react on the surface of the substrate to form the graphene, so that the dependence of the graphene growth on a substrate material can be reduced to a great extent, and different substrate materials can be selected according to different application backgrounds.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: December 26, 2017
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Shumin Wang, Qian Gong, Xiaoming Xie, Hailong Wang, Zengfeng Di, Guqiao Ding, Qingbo Liu
  • Patent number: 9328413
    Abstract: A method for growing a graphene nanoribbon on an insulating substrate having a cleavage plane with atomic level flatness is provided, and belongs to the field of low-dimensional materials and new materials. The method includes the following steps. Step 1: Cleave an insulating substrate to obtain a cleavage plane with atomic level flatness, and prepare a single atomic layer step. Step 2: Directly grow a graphene nanoribbon on the insulating substrate having regular single atomic steps. In the method, a characteristic that nucleation energy of graphene on the atomic step is different from that on the flat cleavage plane is used, and conditions, such as the temperature, intensity of pressure and supersaturation degree of activated carbon atoms, are adjusted, so that the graphene grows only along a step edge into a graphene nanoribbon of an adjustable size. The method is mainly applied to the field of new-type graphene optoelectronic devices.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: May 3, 2016
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Shujie Tang, Guqiao Ding, Xiaoming Xie, Ji Chen, Chen Wang, Mianheng Jiang
  • Publication number: 20150292110
    Abstract: The invention belongs to the technical field of inorganic compounds, and particularly, relates to a method for directly preparing graphene by taking CBr4 as a source material and using methods such as molecular-beam epitaxy (MBE) or chemical vapor deposition (CVD). A method for preparing graphene comprises the following steps: selecting a proper material as a substrate; directly depositing a catalyst and CBr4 on a surface of the substrate; and performing annealing treatment on the sample obtained through deposition. Compared with other technologies, an innovative point of the method in the invention is that the catalyst and CBr4 source can be quantitatively and controllably deposited on any substrate, and the catalyst and CBr4 source react on the surface of the substrate to form the graphene, so that the dependence of the graphene growth on a substrate material can be reduced to a great extent, and different substrate materials can be selected according to different application backgrounds.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 15, 2015
    Inventors: Shumin Wang, Qian Gong, Xiaoming Xie, Hailong Wang, Zengfeng Di, Guqiao Ding, Qingbo Liu
  • Publication number: 20130078424
    Abstract: The present invention provides a hexagonal boron nitride (hBN) substrate with a monatomic layer step and a preparation method thereof, where a surface of the hBN substrate is cleaved to obtain a fresh cleavage plane, and then hBN is etched by using hydrogen at a high temperature to obtain a controllable and regular monatomic layer step. The present invention utilizes an anisotropic etching effect of hydrogen on the hBN and controls an etching rate and degree of the etching by adjusting a hydrogen proportion, the annealing temperature, and the annealing time, so as to achieve the objective of etching the regular monatomic layer step. The preparation process is compatible with the process of preparing graphene through a chemical vapor deposition (CVD) method, and is applicable to preparation of a graphene nanoribbon. The present invention is mainly applied to new graphene electronic devices.
    Type: Application
    Filed: August 5, 2011
    Publication date: March 28, 2013
    Inventors: Guqiao Ding, Shujie Tang, Xiaoming Xie, Mianheng Jiang
  • Publication number: 20130022813
    Abstract: A method for growing a graphene nanoribbon on an insulating substrate having a cleavage plane with atomic level flatness is provided, and belongs to the field of low-dimensional materials and new materials. The method includes the following steps. Step 1: Cleave an insulating substrate to obtain a cleavage plane with atomic level flatness, and prepare a single atomic layer step. Step 2: Directly grow a graphene nanoribbon on the insulating substrate having regular single atomic steps. In the method, a characteristic that nucleation energy of graphene on the atomic step is different from that on the flat cleavage plane is used, and conditions, such as the temperature, intensity of pressure and supersaturation degree of activated carbon atoms, are adjusted, so that the graphene grows only along a step edge into a graphene nanoribbon of an adjustable size. The method is mainly applied to the field of new-type graphene optoelectronic devices.
    Type: Application
    Filed: August 5, 2011
    Publication date: January 24, 2013
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Shujie Tang, Guqiao Ding, Xiaoming Xie, Ji Chen, Chen Wang, Mianheng Jiang