Patents by Inventor Gurgen Harutyunyan

Gurgen Harutyunyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096435
    Abstract: A method for testing a chip includes writing, by a built-in self-test (BIST) circuit of the chip, a first row of a memory of the chip with a first set of values and reading, by the BIST circuit, a second row of the memory a first plurality of times. The second row is adjacent to the first row. The method also includes reading, by the BIST circuit, the first row to extract a second set of values from the first row and based on determining that at least one of the second set of values differs from a corresponding one of the first set of values, designating the first row as a vulnerable row.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Grigor TSHAGHARYAN, Gurgen HARUTYUNYAN, Arun KUMAR, Yervant ZORIAN
  • Publication number: 20230140090
    Abstract: A memory transparent in-system built-in self-test may include performing in-system testing on subsets of memory cells over one or more test intervals of one or more test sessions. A test interval may include copying contents of a subset of memory cells to a register(s), writing test data (e.g., a segment of a pattern) to the subset of memory cells, reading back contents of the subset of memory cells, and restoring the content from the register(s) to the subset of memory cells. In-system testing may be performed on overlapping sets of memory cells. In-system testing may be performed on successive subsets of memory cells within a row (i.e., fast column addressing) and/or within a column (fast column addressing). In-system testing may be performed on sets of m blocks of memory cells during respective test intervals. The number of m blocks tested per interval may be configurable/selectable.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 4, 2023
    Inventors: Grigor TSHAGHARYAN, Gurgen HARUTYUNYAN, Samvel SHOUKOURIAN, Yervant ZORIAN
  • Patent number: 11023310
    Abstract: A system including a user interface, a memory, and a processor configured to perform operations including receiving memory scrambling information including address scrambling information and data scrambling information, and associating one or more address bus bits of a plurality of address bus bits with an address grouping of a plurality of address groupings based on the address scrambling information is disclosed. In an embodiment, the address grouping corresponds to at least one address segment of a plurality of address segments. The operations include determining an error correction code for the at least one address segment that includes one or more address check bits. The operations include generating a physical layout of memory components based on the memory scrambling information. The memory components include at least one of the plurality of address bus bits, and the one or more address check bits.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 1, 2021
    Assignee: Synopsys, Inc.
    Inventors: Hayk Grigoryan, Grigor Tshagharyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Patent number: 10789398
    Abstract: A method for determining redundancy usage rate from a group of memory parameters and a memory yield of a System on a Chip (SoC), using the probabilistic redundancy usage rate and using that rate to calculate an optimal RSMA size. An SoC is then fabricated with the optimal RSMA size.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: September 29, 2020
    Assignee: Synopsys, Inc.
    Inventors: Suren Martirosyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Publication number: 20190035484
    Abstract: A test methodologies for detecting both known and potentially unknown FinFET-specific faults by way of implementing an efficient and reliable base set of March elements in which multiple sequential March-type read operations are performed immediately after logic values (i.e., logic-0 or logic-1) are written into each FinFET cell of a memory array. For example, a March-type write-1 operation is performed, followed immediately by multiple sequentially-executed March-type read-1 operations, then a March-type write-0 operation is performed followed immediately by multiple sequentially-executed March-type read-0 operations. An optional additional March-type read-0 operation is performed before the March-type write-1 operation, and an optional additional March-type read-1 operation is performed before the March-type write-0 operation. The write-1-multiple-read-1 and write-0-multiple-read-0 sequences are performed using one or both of an increasing address order and a decreasing address order.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Inventors: Grigor Tshagharyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Patent number: 10192635
    Abstract: A test methodologies for detecting both known and potentially unknown FinFET-specific faults by way of implementing an efficient and reliable base set of March elements in which multiple sequential March-type read operations are performed immediately after logic values (i.e., logic-0 or logic-1) are written into each FinFET cell of a memory array. For example, a March-type write-1 operation is performed, followed immediately by multiple sequentially-executed March-type read-1 operations, then a March-type write-0 operation is performed followed immediately by multiple sequentially-executed March-type read-0 operations. An optional additional March-type read-0 operation is performed before the March-type write-1 operation, and an optional additional March-type read-1 operation is performed before the March-type write-0 operation. The write-1-multiple-read-1 and write-0-multiple-read-0 sequences are performed using one or both of an increasing address order and a decreasing address order.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 29, 2019
    Assignee: Synopsys, Inc.
    Inventors: Grigor Tshagharyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Patent number: 10115477
    Abstract: A test methodologies for detecting both known and potentially unknown FinFET-specific faults by way of implementing an efficient and reliable base set of March elements in which multiple sequential March-type read operations are performed immediately after logic values (i.e., logic-0 or logic-1) are written into each FinFET cell of a memory array. For example, a March-type write-1 operation is performed, followed immediately by multiple sequentially-executed March-type read-1 operations, then a March-type write-0 operation is performed followed immediately by multiple sequentially-executed March-type read-0 operations. An optional additional March-type read-0 operation is performed before the March-type write-1 operation, and an optional additional March-type read-1 operation is performed before the March-type write-0 operation. The write-1-multiple-read-1 and write-0-multiple-read-0 sequences are performed using one or both of an increasing address order and a decreasing address order.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: October 30, 2018
    Assignee: Synopsys, Inc.
    Inventors: Grigor Tshagharyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Publication number: 20180129769
    Abstract: A method for determining redundancy usage rate from a group of memory parameters and a memory yield of a System on a Chip (SoC), using the probabilistic redundancy usage rate and using that rate to calculate an optimal RSMA size. An SoC is then fabricated with the optimal RSMA size.
    Type: Application
    Filed: August 23, 2017
    Publication date: May 10, 2018
    Inventors: Suren Martirosyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Publication number: 20180130546
    Abstract: A test methodologies for detecting both known and potentially unknown FinFET-specific faults by way of implementing an efficient and reliable base set of March elements in which multiple sequential March-type read operations are performed immediately after logic values (i.e., logic-0 or logic-1) are written into each FinFET cell of a memory array. For example, a March-type write-1 operation is performed, followed immediately by multiple sequentially-executed March-type read-1 operations, then a March-type write-0 operation is performed followed immediately by multiple sequentially-executed March-type read-0 operations. An optional additional March-type read-0 operation is performed before the March-type write-1 operation, and an optional additional March-type read-1 operation is performed before the March-type write-0 operation. The write-1-multiple-read-1 and write-0-multiple-read-0 sequences are performed using one or both of an increasing address order and a decreasing address order.
    Type: Application
    Filed: September 28, 2017
    Publication date: May 10, 2018
    Inventors: Grigor Tshagharyan, Gurgen Harutyunyan, Samvel Shoukourian, Yervant Zorian
  • Patent number: 9831000
    Abstract: An integrated circuit includes a memory and a memory test circuit, which when invoked to test the memory, is configured to generate one or more March tests applied to the memory. The memory test circuit is further configured to construct a table including a first index, a second index, and a first March test of the one or more March tests. The first index is associated with one or more families each characterized by a different length of the one or more March tests. The second index is associated with one or more mechanisms each characterized by a different property of the one or more March tests. The memory test circuit is further configured to generate a second March test from the first March test.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 28, 2017
    Assignee: SYNOPSYS, INC.
    Inventors: Aram Hakhumyan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Patent number: 9514258
    Abstract: A memory structural model is generated directly from memory configuration information and memory layout information in an efficient manner. Information on strap distribution is generated by analyzing configuration information of the memory and the corresponding memory layout. Information on scrambling of addresses in the memory layout is generated by programming the memory layout with physical bit patterns, extracting corresponding logical bit patterns and then analyzing the discrepancy between the physical bit patterns and the logical bit patterns. The strap distribution information and the address scrambling information are combined into the memory structural model used for designing an efficient test and repair engine.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: December 6, 2016
    Assignee: Synopsys, Inc.
    Inventors: Karen Amirkhanyan, Karen Darbinyan, Arman Davtyan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Patent number: 9053050
    Abstract: A desirable number of segments for a multi-segment single error correcting (SEC) coding scheme is determined based on scrambling information for a memory. The desirable number of segments can be the minimum number of segments required to satisfy a masked write segmentation requirement and a multi-bit upset size requirement. In one aspect, the memory scrambling information can specify the different scrambling techniques employed by the memory (e.g., Input-Output (IO) cell scrambling, column scrambling, column twisting, strap distribution, etc.). Based on the scrambling information, a mapping between the logical structure and physical layout for the memory can be derived. The mapping can be used to determine the least number of segments needed to satisfy the masked write requirement and the multi-bit upset size requirement.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 9, 2015
    Assignee: Synopsys, Inc.
    Inventors: Hayk Grigoryan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Publication number: 20140380107
    Abstract: An integrated circuit includes a memory and a memory test circuit, which when invoked to test the memory, is configured to generate one or more March tests applied to the memory. The memory test circuit is further configured to construct a table including a first index, a second index, and a first March test of the one or more March tests. The first index is associated with one or more families each characterized by a different length of the one or more March tests. The second index is associated with one or more mechanisms each characterized by a different property of the one or more March tests. The memory test circuit is further configured to generate a second March test from the first March test.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Inventors: Aram Hakhumyan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Patent number: 8850277
    Abstract: A method and system for testing an electronic memory. The method includes subjecting the electronic memory to a first test condition of a predetermined set of test conditions. The method also includes testing functionality of the electronic memory, a first plurality of times, for the first test condition using a predetermined test algorithm. The method further includes checking availability of a second test condition from the predetermined set of test conditions if the functionality of the electronic memory is satisfactory. Further, the method includes testing the functionality of the electronic memory, a second plurality of times, for the second test condition using the predetermined test algorithm if the second test condition is available. Moreover, the method includes accepting the electronic memory for use in a product if the functionality of the electronic memory is satisfactory.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: September 30, 2014
    Assignee: Synopsys, Inc.
    Inventors: Karen Amirkhanyan, Hayk Grigoryan, Gurgen Harutyunyan, Tatevik Melkumyan, Samvel Shoukourian, Alex Shubat, Valery Vardanian, Yervant Zorian
  • Publication number: 20130346056
    Abstract: A memory structural model is generated directly from memory configuration information and memory layout information in an efficient manner. Information on strap distribution is generated by analyzing configuration information of the memory and the corresponding memory layout. Information on scrambling of addresses in the memory layout is generated by programming the memory layout with physical bit patterns, extracting corresponding logical bit patterns and then analyzing the discrepancy between the physical bit patterns and the logical bit patterns. The strap distribution information and the address scrambling information are combined into the memory structural model used for designing an efficient test and repair engine.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: SYNOPSYS, INC.
    Inventors: Karen Amirkhanyan, Karen Darbinyan, Arman Davtyan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Publication number: 20130322827
    Abstract: The invention relates to a connector (CON1, CON2) comprising a first enclosure (ENCL1_CON2P—1, ENCL1_CON1_P2) and at least one electrical contacting means (CE1_ou1, CE1_out—2, CP_out—1, CE1_in—1, CE1_in—2), the first enclosure (ENCL1_CON1_P1, ENCL1_CON1_P2) comprises an inlet (INL) for a first cable (CABLE1) and an outlet (OUTL) for the first cable (CABLE1), the first enclosure (ENCL1_CON1_P1, ENCL1_CON1_P2), the inlet (INL) and the outlet (OUTL) are adapted to completely enclose a first electrical connection between the at least one electrical contacting means (CE1_out—1, CE1_out—2, CP_out—1, CE1_in—1, CE1_in—2) of the connector (CON1, CON2) and at least one conductor (COND_in, COND_out) of the first cable (CABLE1). The invention further relates to an assembly (ASBY1) comprising the connector (CON1, CON2) and the first cable (CABLE1) connected to the connector (CON1, CON2).
    Type: Application
    Filed: October 20, 2011
    Publication date: December 5, 2013
    Applicant: ALCATEL LUCENT
    Inventors: Karl-Heinz Reimann, Gurgen Harutyunyan, Ekkehard Schomburg, Dietmar Brunsch
  • Publication number: 20130145119
    Abstract: A desirable number of segments for a multi-segment single error correcting (SEC) coding scheme is determined based on scrambling information for a memory. The desirable number of segments can be the minimum number of segments required to satisfy a masked write segmentation requirement and a multi-bit upset size requirement. In one aspect, the memory scrambling information can specify the different scrambling techniques employed by the memory (e.g., Input-Output (IO) cell scrambling, column scrambling, column twisting, strap distribution, etc.). Based on the scrambling information, a mapping between the logical structure and physical layout for the memory can be derived. The mapping can be used to determine the least number of segments needed to satisfy the masked write requirement and the multi-bit upset size requirement.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicant: Synopsys, Inc.
    Inventors: Hayk Grigoryan, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Publication number: 20130019130
    Abstract: Testing electronic memories based on fault and test algorithm periodicity. A processor unit for testing an electronic memory includes a built-in self-test (BIST) finite state machine, an address generator, a data generator, a test algorithm generation unit, a programmable test algorithm register, and a test algorithm register control unit. A memory wrapper unit for testing an electronic memory includes an operation decoder, a data comparator, and an electronic memory under test. The method includes constructing a fault periodic table having columns corresponding with test mechanisms, and rows corresponding with fault families. A first March test sequence and second March test sequence are selected according to respective fault families and test mechanisms, and applied to an electronic memory. The electronic memory under test is determined to be one of acceptable and unacceptable based on results of the first March test sequence and the second March test sequence.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: SYNOPSYS INC.
    Inventors: Aram HAKHUMYAN, Gurgen Harutyunyan, Samvel Shoukourian, Valery Vardanian, Yervant Zorian
  • Publication number: 20130019132
    Abstract: A method and system for testing an electronic memory. The method includes subjecting the electronic memory to a first test condition of a predetermined set of test conditions. The method also includes testing functionality of the electronic memory, a first plurality of times, for the first test condition using a predetermined test algorithm. The method further includes checking availability of a second test condition from the predetermined set of test conditions if the functionality of the electronic memory is satisfactory. Further, the method includes testing the functionality of the electronic memory, a second plurality of times, for the second test condition using the predetermined test algorithm if the second test condition is available. Moreover, the method includes accepting the electronic memory for use in a product if the functionality of the electronic memory is satisfactory.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: SYNOPSYS INC.
    Inventors: Karen AMIRKHANYAN, Hayk Grigoryan, Gurgen Harutyunyan, Tatevik Melkumyan, Samvel Shoukourian, Alex Shubat, Valery Vardanian, Yervant Zorian
  • Patent number: 7683744
    Abstract: A Radio-Frequency (RF) waveguide comprising at least a folded sheet (3) is described, wherein the sheet comprises a first layer made of a plastic, and at least a second layer made of a electric conductive material. Furthermore a method for manufacturing such a RF waveguide plus a device to perform said method is described.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: March 23, 2010
    Assignee: Alcatel Lucent
    Inventors: Erhard Mahlandt, Olaf Mientkewitz, Gurgen Harutyunyan