Patents by Inventor Guru Mathur

Guru Mathur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150270391
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Patent number: 9136368
    Abstract: A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: September 15, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Guru Mathur
  • Patent number: 9123802
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define at least one vertical drift region bounded on at least two opposite sides by the deep trench structures. The deep trench structures include dielectric liners. The deep trench structures are spaced so as to form RESURF regions for the drift region. Vertical gates are formed in vertically oriented gate trenches in the dielectric liners of the deep trench structures, abutting the vertical drift regions. A body implant mask for implanting dopants for the transistor body is also used as an etch mask for forming the vertically oriented gate trenches in the dielectric liners.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: September 1, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Guru Mathur, Marie Denison, Sameer Pendharkar
  • Publication number: 20150214096
    Abstract: The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Inventors: Binghua HU, Sameer PENDHARKAR, Guru MATHUR, Takehito TAMURA
  • Patent number: 9076863
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: July 7, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Publication number: 20150118861
    Abstract: A method of semiconductor fabrication includes providing an unpatterned lightly doped Czochralski bulk silicon substrate (LDCBS substrate) having a concentration of oxygen atoms of at least (?) 1017 atoms/cm3 with a boron doping or n-type doping concentration of between 1×1012 cm?3 and 5×1014 cm?3. Before any oxidization processing, the LDCBS substrate is annealed at a nucleating temperature between 550° C. and 760° C. for a nucleating time that nucleates the oxygen atoms in a sub-surface region of the LDCBS substrate to form oxygen precipitates therefrom. After the annealing, a surface of the LDCBS substrate or an epitaxial layer on the surface of the LDCBS substrate is initially oxidized in an oxidizing ambient at a peak temperature of between 800° C. and 925° C. for a time less than or equal (?) to 30 minutes.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: BRADLEY DAVID SUCHER, RICK L. WISE, SCOTT GERARD BALSTER, SEUNG-SA PARK, PHILIP LELAND HOWER, JOHN LIN, GURU MATHUR, YONGXI ZHANG
  • Publication number: 20150097230
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Marie DENISON, Sameer PENDHARKAR, Guru MATHUR
  • Publication number: 20150097225
    Abstract: A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Marie DENISON, Sameer PENDHARKAR, Guru MATHUR
  • Publication number: 20150097231
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define at least one vertical drift region bounded on at least two opposite sides by the deep trench structures. The deep trench structures include dielectric liners. The deep trench structures are spaced so as to form RESURF regions for the drift region. Vertical gates are formed in vertically oriented gate trenches in the dielectric liners of the deep trench structures, abutting the vertical drift regions. A body implant mask for implanting dopants for the transistor body is also used as an etch mask for forming the vertically oriented gate trenches in the dielectric liners.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Guru MATHUR, Marie DENISON, Sameer PENDHARKAR
  • Publication number: 20150021687
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Publication number: 20140001596
    Abstract: The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 2, 2014
    Inventors: Binghua Hu, Sameer Pendharkar, Guru Mathur, Tamura Takehito
  • Patent number: 7642546
    Abstract: According to some embodiments, an article of manufacture comprises a substrate; a molecular layer on the substrate comprising at least one charge storage molecule coupled to the substrate by a molecular linker; a solid barrier dielectric layer directly on the molecular layer; and a conductive layer directly on the solid barrier dielectric layer. In some embodiments, the solid barrier dielectric layer is configured to provide a voltage drop across the molecular layer that is greater than a voltage drop across the solid barrier dielectric layer when a voltage is applied to the conductive layer. In some embodiments, the molecular layer has a thickness greater than that of the solid barrier dielectric layer. The article of manufacture contains no electrolyte between the molecular layer and the conductive layer.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 5, 2010
    Assignees: Zettacore, Inc., North Carolina State University
    Inventors: Veena Misra, Ritu Shrivastava, Zhong Chen, Guru Mathur
  • Publication number: 20070164374
    Abstract: According to some embodiments, an article of manufacture comprises a substrate; a molecular layer on the substrate comprising at least one charge storage molecule coupled to the substrate by a molecular linker; a solid barrier dielectric layer directly on the molecular layer; and a conductive layer directly on the solid barrier dielectric layer. In some embodiments, the solid barrier dielectric layer is configured to provide a voltage drop across the molecular layer that is greater than a voltage drop across the solid barrier dielectric layer when a voltage is applied to the conductive layer. In some embodiments, the molecular layer has a thickness greater than that of the solid barrier dielectric layer. The article of manufacture contains no electrolyte between the molecular layer and the conductive layer.
    Type: Application
    Filed: November 30, 2006
    Publication date: July 19, 2007
    Inventors: Veena Misra, Ritu Shrivastava, Zhong Chen, Guru Mathur
  • Patent number: 6958485
    Abstract: The present invention provides hybrid microelectronic memory device, comprising: (a) a substrate having a surface, a first region of first work function adjacent the surface, and a second region of second work function adjacent the surface and adjacent the first region; (b) a film comprising redox-active molecules on the first and second regions; and (c) an electrode connected to the film. The present invention further provides a hybrid microelectronic memory device, comprising: (a) a substrate having surface and a structure or region such as a diode for increasing the retention time of the device formed adjacent the surface; (b) a film comprising redox-active molecules on or associated with the region or structure; and (c) an electrode connected to the redox active molecules opposite the substrate surface. Methods of using such devices are also described.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 25, 2005
    Assignee: North Carolina State University
    Inventors: Veena Misra, Srivardhan Gowda, Guru Mathur
  • Publication number: 20050121660
    Abstract: The present invention provides hybrid microelectronic memory device, comprising: (a) a substrate having a surface, a first region of first work function adjacent the surface, and a second region of second work function adjacent the surface and adjacent the first region; (b) a film comprising redox-active molecules on the first and second regions; and (c) an electrode connected to the film. The present invention further provides a hybrid microelectronic memory device, comprising: (a) a substrate having surface and a structure or region such as a diode for increasing the retention time of the device formed adjacent the surface; (b) a film comprising redox-active molecules on or associated with the region or structure; and (c) an electrode connected to the redox active molecules opposite the substrate surface. Methods of using such devices are also described.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 9, 2005
    Inventors: Veena Misra, Srivardhan Gowda, Guru Mathur