Patents by Inventor Gururaj Padaki

Gururaj Padaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963042
    Abstract: A system for offloading traffic from a cellular network to a broadcast network is provided. The offloading mechanism caters to both unicast and broadcast traffic. The system includes a converged cellular core network, World Wide Web, a CDN, a Broadcast Offload Packet Core (BO-PC), a cellular base station, a Broadcast Radio Head, and a converged UE. The converged cellular core network includes an enhanced packet core, a policy rules engine and a packet inspection and steering unit. The BO-PC includes a Broadcast Proxy, a subscriber database, a Broadcast Offload Service Center, a Broadcast Offload Gateway and an analytics engine. For offloading the unicast traffic, the packet inspection and steering unit identifies sessions that are offloaded for supporting offload of the traffic from the converged cellular core network to the broadcast network.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: April 16, 2024
    Assignee: SAANKHYA LABS PVT. LTD.
    Inventors: Arindam Chakraborty, Makarand Kulkarni, Anindya Saha, Gururaj Padaki, Parag Naik, Preetham Uthaiah
  • Publication number: 20240107376
    Abstract: A system for offloading traffic from a cellular network to a broadcast network is provided. The offloading mechanism caters to both unicast and broadcast traffic. The system includes a converged cellular core network, World Wide Web, a CDN, a Broadcast Offload Packet Core (BO-PC), a cellular base station, a Broadcast Radio Head, and a converged UE. The converged cellular core network includes an enhanced packet core, a policy rules engine and a packet inspection and steering unit. The BO-PC includes a Broadcast Proxy, a subscriber database, a Broadcast Offload Service Center, a Broadcast Offload Gateway and an analytics engine. For offloading the unicast traffic, the packet inspection and steering unit identifies sessions that are offloaded for supporting offload of the traffic from the converged cellular core network to the broadcast network.
    Type: Application
    Filed: March 18, 2021
    Publication date: March 28, 2024
    Inventors: Arindam Chakraborty, Makarand Kulkarni, Anindya Saha, Gururaj Padaki, Parag Naik, Preetham Uthaiah
  • Patent number: 11863393
    Abstract: System and method embodiments are disclosed for high availability management for open radio access network (O-RAN). The O-RAN may be deployed on cloud with the O-CU deployed on a region cloud, O-RUs deployed on a cell site O-Cloud, and O-DUs deployed on an edge cloud. Each O-RU may comprise one or more RF clusters, computation clusters, and interface clusters. O-RU instances and O-DU instances may be instantiated with redundancy on the cell site O-Cloud and on the edge cloud, respectively, to serve one or more users. Local and central high-availability (HA) managers may be used to monitor O-RU instance performance for failure prediction/detection and to monitor internal states of each O-DU instance. In response to O-RU instance failure or O-DU internal states beyond/below state thresholds, new O-RU or O-DU instances may be instantiated as replacement instances for O-Cloud high availability management.
    Type: Grant
    Filed: November 24, 2022
    Date of Patent: January 2, 2024
    Assignee: EdgeQ, Inc.
    Inventors: Gururaj Padaki, Sriram Rajagopal, Hariprasad Gangadharan
  • Publication number: 20230397048
    Abstract: Described in the present disclosure are system and method embodiments for 5G and WLAN private network convergence to improve Quality of service (QoS) and Quality of experience (QoE) by switching, steering or splitting the traffic using a cognitive layer. The Cognitive layer may sense signal conditions and learn user preferences for traffic allocation between available Wi-Fi and 5G networks. In embodiments, the cognitive layer may comprise an Artificial Intelligence (AI) or Machine Learning (ML) module, signal conditions sensor, and user QoS/QoE aware schedulers. A cloud-based service controller may be incorporated to make decisions on user QoS and QoE allocation based on the cognitive layer input. Implementation of the network convergence embodiments may improve QoS/QoE.
    Type: Application
    Filed: June 4, 2022
    Publication date: December 7, 2023
    Applicant: EdgeQ, Inc.
    Inventors: Gururaj PADAKI, Sriram RAJAGOPAL, Haripriya SURAMPUDI, Hersh Vardhan SHUKLA, Venkatesh SUKUMARAN
  • Publication number: 20230328720
    Abstract: System and method embodiments are disclosed to improve radio access network coverage area, increase throughput, and reduce power consumption in user equipment (UE). Downlink (DL) and uplink (UL) are disaggregated in one or more radio units (RUs). A UE receives DL data packets from a DL RU and uploads UL data packets to a UL RU disaggregated from the DL RU. The UL RU couples to a distributed unit (DU) directly or via the DL RU such that an acknowledgment or error message for successful or unsuccessful reception of the UL data packets may be sent back to the UE via the DL RU. The DU may track a UE motion trajectory and re-map UL traffic from one UL RU to another UL RU. Embodiments of DL/UL disaggregation may improve power efficiency and be advantageous for various applications such as internet of things, cyber physical systems, 5G communications, etc.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 12, 2023
    Applicant: EdgeQ, Inc.
    Inventors: Gururaj Padaki, Sriram Rajagopal, Vinay Ravuri
  • Patent number: 11240678
    Abstract: A system for improving indoor coverage of cellular reception is provided. The system includes an Intelligent receiver and a Pico transmitter. The intelligent receiver demodulates a signal received from a Broadcast radio head (BRH) with a HPHT or a LPLT toplogy through an outdoor high gain rooftop antenna that is externally connected to the intelligent receiver. The intelligent receiver includes an artificial intelligence (AI) or Machine learning (ML) based indoor coverage monitoring unit and a Pico transmitter application. The AI/ML based indoor coverage monitoring unit continuously monitors cellular reception factors of indoor user devices. The AI/ML based indoor coverage monitoring unit predicts an optimal indoor modulation profile and selects a required modulation index required for the indoor user devices. The Pico transmitter application re-broadcasts or relays the demodulated signal, based on an optimal indoor modulation profile required for the indoor user devices.
    Type: Grant
    Filed: January 23, 2021
    Date of Patent: February 1, 2022
    Assignee: Saankhya Labs Pvt. Ltd.
    Inventors: Parag Naik, Anindya Saha, Gururaj Padaki
  • Publication number: 20210235280
    Abstract: A system for improving indoor coverage of cellular reception is provided. The system includes an Intelligent receiver and a Pico transmitter. The intelligent receiver demodulates a signal received from a Broadcast radio head (BRH) with a HPHT or a LPLT toplogy through an outdoor high gain rooftop antenna that is externally connected to the intelligent receiver. The intelligent receiver includes an artificial intelligence (AI) or Machine learning (ML) based indoor coverage monitoring unit and a Pico transmitter application. The AI/ML based indoor coverage monitoring unit continuously monitors cellular reception factors of indoor user devices. The AI/ML based indoor coverage monitoring unit predicts an optimal indoor modulation profile and selects a required modulation index required for the indoor user devices. The Pico transmitter application re-broadcasts or relays the demodulated signal, based on an optimal indoor modulation profile required for the indoor user devices.
    Type: Application
    Filed: January 23, 2021
    Publication date: July 29, 2021
    Inventors: Parag Naik, Anindya Saha, Gururaj Padaki
  • Publication number: 20200344821
    Abstract: Disclosed is a system and method for establishing a device to device communication link in cellular networks. The system includes one or more user equipments, and a base station. The one or more user equipments includes a first user equipment and a second user equipment. The first user equipment is configured with a first user equipment cognitive engine and the second user equipment is configured with a second user equipment engine. The base station that is coupled to a cellular tower and configured with an evolved packet core EPC. The base station and at least one of the one or more user equipments performs a method for establishing the device to device communication link in the cellular network using a transmit to receive transition gap (TTG) and a receive to transmit transition gap (RTG).
    Type: Application
    Filed: August 1, 2019
    Publication date: October 29, 2020
    Inventors: Gururaj Padaki, Vishwakumara Kayargadde Kayargadde, Rajendra V. Hegde, Anoop Hullenahalli
  • Patent number: 10813146
    Abstract: Disclosed is a system and method for establishing a device to device communication link in cellular networks. The system includes one or more user equipments, and a base station. The one or more user equipments includes a first user equipment and a second user equipment. The first user equipment is configured with a first user equipment cognitive engine and the second user equipment is configured with a second user equipment engine. The base station that is coupled to a cellular tower and configured with an evolved packet core EPC. The base station and at least one of the one or more user equipments performs a method for establishing the device to device communication link in the cellular network using a transmit to receive transition gap (TTG) and a receive to transmit transition gap (RTG).
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: October 20, 2020
    Assignee: SAANKHYA LABS PVT. LTD.
    Inventors: Gururaj Padaki, Vishwakumara Kayargadde, Rajendra V Hegde, Anoop Hullenahalli
  • Patent number: 9092227
    Abstract: A vector slot processor that is capable of supporting multiple signal processing operations for multiple demodulation standards is provided. The vector slot processor includes a plurality of micro execution slot (MES) that performs the multiple signal processing operations on the high speed streaming inputs. Each of the MES includes one or more n-way signal registers that receive the high speed streaming inputs, one or more n-way coefficient registers that store filter coefficients for the multiple signal processing, and one or more n-way Multiply and Accumulate (MAC) units that receive the high speed streaming inputs from the one or more n-way signal registers and filter coefficients from one or more n-way coefficient registers. The one or more n-way MAC units perform a vertical MAC operation and a horizontal multiply and add operation on the high speed streaming inputs.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: July 28, 2015
    Inventors: Anindya Saha, Gururaj Padaki, Santosh Billava, Rakesh A. Joshi
  • Patent number: 8832171
    Abstract: In one embodiment, a processor performs a method of generating pipelined data read indexes and data write indexes for a Prime Factor Algorithm (PFA) Discrete Fourier Transform (DFT) without look-up tables. The processor is adapted to factorize an ā€˜Nā€™ point PFA DFT into one or more mutually prime factors and zero or more non-prime factors, calculate a 0th column index for an ith row (Xi0), calculate an IndCor when the value of Xi0 equals zero and when a row number (i) does not equal zero, calculate Xij, generate the data read indexes, perform a DFT kernel computation on Lk point for the mutually prime factors and the non-prime factors, and generate the data write indexes for the mutually prime factors and the non-prime factors. Xij represents ith row and jth column of 2D input Buffer and enables a selection of a linear index from the 2D input buffer.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: September 9, 2014
    Assignee: Saankhya Labs Pvt. Ltd.
    Inventors: Gururaj Padaki, Saurabh Mishra, Suman Sanisetty
  • Patent number: 8812569
    Abstract: A method for implementing a digital filter is provided. The method includes (a) determining a bit-width of an incoming data sample of an incoming signal by measuring a distance between a leading zero or one of the incoming data sample and a trailing zero of the incoming data sample. The incoming data sample is obtained by sampling the incoming signal at a pre-defined time interval, (b) obtaining bit-width multipliers with variable bit-widths based on a first probability distribution function (PDF) of bit-widths of incoming data samples, (c) allocating the incoming data sample and a filter coefficient based on the bit-width of the incoming data sample and a bit-width of the filter coefficient to one bit-width multiplier of the bit-width multipliers, and (d) performing a multiply operation of a Multiply and Accumulate (MAC) operation on the one bit-width multiplier to generate an output of the digital filter.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 19, 2014
    Assignee: Saankhya Labs Private Limited
    Inventors: Parag Naik, Anindya Saha, Gururaj Padaki, Subrahmanya Kondageri Shankaraiah, Saurabh Mishra
  • Patent number: 8788549
    Abstract: A system for computing a block floating point scaling factor by detecting a dynamic range of an input signal in a central processing unit without additional overhead cycles is provided. The system includes a dynamic range monitoring unit that detects the dynamic range of the input signal by snooping outgoing write data and incoming memory read data of the input signal. The dynamic range monitoring unit includes a running maximum count unit that stores a least value of a count of leading zeros and leading ones, and a running minimum count that stores a least value of the count of trailing zeros. The dynamic range is detected based on the least value of the count of leading zeros and leading ones and the count of trailing zeros. The system further includes a scaling factor computation module that computes the block floating point (BFP) scaling factor based on the dynamic range.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: July 22, 2014
    Assignee: Saankhya Labs Private Limited
    Inventors: Gururaj Padaki, Anindya Saha, Parag Naik, Vishwakumara Kayargadde, Sunil Hr
  • Patent number: 8654873
    Abstract: In one embodiment, a Television (TV) receiver to perform a method of synchronizing a demodulator at a Viterbi decode input in the TV receiver using one or more bit de-interleaved even and odd Orthogonal Frequency Division Multiplexing (OFDM) symbols is provided. The method includes (i) performing a Viterbi decoding on the bit de-interleaved even and odd OFDM symbols when a frame boundary does not exist for the bit de-interleaved even and odd OFDM symbols, (ii) performing a convolutional encoding on an decoded data output of the Viterbi decoding, (iii) determining whether an output of the convolutional encoding of the bit de-interleaved OFDM symbols matches an input at a Viterbi decode, and (iv) determining whether the output of the convolutional encoding of the bit de-interleaved even and odd OFDM symbols matches with a SYNC pattern or a SYNC? pattern to obtain a RS packet align boundary.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 18, 2014
    Inventors: Gururaj Padaki, Sunil Hosur Rames, Rakesh A Joshi, Raghavendra Raichur, Rajendra Hegde
  • Patent number: 8611471
    Abstract: A system and method for reducing implementation complexity for estimation of a Carrier Frequency Offset (CFO) and a Symbol Timing Offset (STO) for an input signal for spectrally shaped multiple communication standards. The system is implemented by replacing multiplier with shifters. The system includes a CFO estimation block, a STO estimation block, and a band extraction block that extracts a lower band edge and an upper band edge of the input signal. The STO estimation block includes (i) a sample error generation block that computes a sampling timing error value, and (ii) a Phase Lock Loop block that estimates a frequency error and a phase error corresponding to the sampling timing error value. The CFO estimation block includes (i) a carrier offset error generation block that generates a carrier offset error value, and (ii) a leaky average block for performing a filter operation.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 17, 2013
    Assignee: Saankhya Labs Pvt. Ltd.
    Inventors: Saurabh Mishra, Parag Naik, Subrahmanya Kondageri Shankaraiah, S Harish Krishnan, Gururaj Padaki
  • Patent number: 8605225
    Abstract: A Television (TV) receiver for faster channel switch times between a plurality of broadcasting TV channels with reduced latency in overall demodulation cycle for multiple demodulation standards is provided. The TV receiver includes a tuner that receives the broadcasting TV channels from a broadcasting system, performs a tuning operation, and sets a desired frequency for each of the broadcasting TV channels during a channel scan operation. A demodulator demodulates each of the broadcasting TV channels and acquires one or more acquisition channel parameters of each of the broadcasting TV channels during the channel scan operation. An application processor is coupled to the demodulator via a low throughput interface. The application processor performs a read operation and a write operation of the acquisition channel parameters to memory mapped registers on the demodulator when a channel status switches from a first state to a second state.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 10, 2013
    Assignee: Saankhya Labs Pvt. Ltd.
    Inventors: Sunil Hosur Ramesh, Gururaj Padaki, Abdul Aziz, Parag Naik
  • Patent number: 8571119
    Abstract: A Software Defined Radio (SDR) subsystem capable of supporting a multiple communication standards and platforms for modulation, demodulation and trans-modulation of an input signal is provided. The SDR subsystem includes a Signal Conditioning Cluster (SCC) unit that includes a signal conditioning CPU adapted for sample based signal processing, a Signal Processing Cluster (SPC) unit that includes a signal processing CPU adapted for block based signal processing, and a Channel Codec Cluster (CCC) unit that performs a channel encoding or a channel decoding operation.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 29, 2013
    Assignee: Saankhya Labs Pvt. Ltd
    Inventors: Parag Naik, Anindya Saha, Hemant Mallapur, Sunil Hr, Gururaj Padaki
  • Publication number: 20120284464
    Abstract: A system for computing a block floating point scaling factor by detecting a dynamic range of an input signal in a central processing unit without additional overhead cycles is provided. The system includes a dynamic range monitoring unit that detects the dynamic range of the input signal by snooping outgoing write data and incoming memory read data of the input signal. The dynamic range monitoring unit includes a running maximum count unit that stores a least value of a count of leading zeros and leading ones, and a running minimum count that stores a least value of the count of trailing zeros. The dynamic range is detected based on the least value of the count of leading zeros and leading ones and the count of trailing zeros. The system further includes a scaling factor computation module that computes the block floating point (BFP) scaling factor based on the dynamic range.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: SAANKHYA LABS PRIVATE LIMITED
    Inventors: Gururaj PADAKI, Anindya SAHA, Parag NAIK, Vishwakumara KAYARGADDE, Sunil Hosur Ramesh
  • Publication number: 20120284318
    Abstract: A method for implementing a digital filter is provided. The method includes (a) determining a bit-width of an incoming data sample of an incoming signal by measuring a distance between a leading zero or one of the incoming data sample and a trailing zero of the incoming data sample. The incoming data sample is obtained by sampling the incoming signal at a pre-defined time interval, (b) obtaining bit-width multipliers with variable bit-widths based on a first probability distribution function (PDF) of bit-widths of incoming data samples, (c) allocating the incoming data sample and a filter coefficient based on the bit-width of the incoming data sample and a bit-width of the filter coefficient to one bit-width multiplier of the bit-width multipliers, and (d) performing a multiply operation of a Multiply and Accumulate (MAC) operation on the one bit-width multiplier to generate an output of the digital filter.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: SAANKHYA LABS PRIVATE LIMITED
    Inventors: Parag NAIK, Anindya SAHA, Gururaj PADAKI, Subrahmanya Kondageri SHANKARAIAH, Saurabh MISHRA
  • Publication number: 20120284487
    Abstract: A vector slot processor that is capable of supporting multiple signal processing operations for multiple demodulation standards is provided. The vector slot processor includes a plurality of micro execution slot (MES) that performs the multiple signal processing operations on the high speed streaming inputs. Each of the MES includes one or more n-way signal registers that receive the high speed streaming inputs, one or more n-way coefficient registers that store filter coefficients for the multiple signal processing, and one or more n-way Multiply and Accumulate (MAC) units that receive the high speed streaming inputs from the one or more n-way signal registers and filter coefficients from one or more n-way coefficient registers. The one or more n-way MAC units perform a vertical MAC operation and a horizontal multiply and add operation on the high speed streaming inputs.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: Saankhya Labs Private Limited
    Inventors: Anindya SAHA, Gururaj PADAKI, Santosh BILLAVA, Rakesh A. JOSHI