Patents by Inventor Gustaaf Borghs

Gustaaf Borghs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150335257
    Abstract: A kit of parts for electrical stimulation and/or recording of activity of excitable cells in a tissue is described. The kit of parts comprises on the one hand a probe guiding means comprising a plurality of accommodation channels, each channel being adapted for accommodating a probe device having a plurality of stimulation means and/or recording means located on a die. At least one of the plurality of accommodation channels has a curved shape. The kit of parts also comprises at least one probe device for electrical stimulation and/or recording of activity of excitable cells in a tissue, the probe device comprising a plurality of stimulation means and/or recording means located on a die having a thinned and etched surface for providing flexibility to the probe device.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 26, 2015
    Applicants: IMEC VZW, ATLAS NEUROENGINEERING BVBA, VIB, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Bruce MCNAUGHTON, Gustaaf BORGHS, Arno AARTS, Peter PEUMANS
  • Publication number: 20150197742
    Abstract: The present invention relates to a population of monodisperse magnetic nanoparticles with a diameter between 1 and 100 nm which are coated with a layer with hydrophilic end groups. Herein the layer with hydrophilic end groups comprises an inner layer of monosaturated and/or monounsaturated fatty acids bound to said nanoparticles and bound to said fatty acids, an outer layer of a phospholipid conjugated to a monomethoxy polyethyleneglycol (PEG) comprising a hydrophilic end group, or comprises a covalently bound hydrophilic layer bound to said nanoparticles.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 16, 2015
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: Deepak Balaji Thimiri Govinda Raj, Liesbet Lagae, Wim Annaert, Gustaaf Borghs
  • Patent number: 8936935
    Abstract: The present invention relates to a population of monodisperse magnetic nanoparticles with a diameter between 1 and 100 nm which are coated with a layer with hydrophilic end groups. Herein the layer with hydrophilic end groups comprises an inner layer of monosaturated and/or monounsaturated fatty acids bound to said nanoparticles and bound to said fatty acids, an outer layer of a phospholipid conjugated to a monomethoxy polyethyleneglycol (PEG) comprising a hydrophilic end group, or comprises a covalently bound hydrophilic layer bound to said nanoparticles.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: January 20, 2015
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Deepak Balaji Thimiri Govinda Raj, Liesbet Lagae, Wim Annaert, Gustaaf Borghs
  • Patent number: 8810787
    Abstract: Methods and apparatus in the field of single molecule sensing are described, e.g. for molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides. Molecular spectroscopy on a molecule translocating through a solid-state nanopore is described. Optical spectroscopic signals are enhanced by plasmonic field-confinement and antenna effects and probed in transmission by plasmon-enabled transmission of light through an optical channel that overlaps with the physical channel.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 19, 2014
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Pol Van Dorpe, Iwijn De Vlaminck, Liesbet Lagae, Gustaaf Borghs
  • Patent number: 8758688
    Abstract: The present invention is related to the localized/patterned deposition and/or desorption of (bio)molecules using microelectronic structures. Often pre-existing structures needed for proper functioning of the device (e.g. sensors, . . . ) can be used as individually addressable control structures to achieve localized deposition through thermal and/or electrochemical spotting, thereby reducing the need for and simplifying additional processing steps to achieve localized/patterned deposition. If these multi-purpose structures are not available, additional control structures can be implemented, using microelectronic VLSI production technology.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: June 24, 2014
    Assignees: IMEC, Katholieke Universiteit Leuven
    Inventors: Koen De Keersmaecker, Gustaaf Borghs, Piet Herdewijn
  • Patent number: 8724113
    Abstract: A method for forming a nanostructure penetrating a layer and the device made thereof is disclosed. In one aspect, the device has a substrate, a layer present thereon, and a nanostructure penetrating the layer. The nanostructure defines a nanoscale passageway through which a molecule to be analyzed can pass through. The nanostructure has, in cross-sectional view, a substantially triangular shape. This shape is particularly achieved by growth of an epitaxial layer having crystal facets defining tilted sidewalls of the nanostructure. It is highly suitably for use for optical characterization of molecular structure, particularly with surface plasmon enhanced transmission spectroscopy.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 13, 2014
    Assignees: IMEC, Katholieke Universiteit Leuven
    Inventors: Kai Cheng, Pol Van Dorpe, Liesbet Lagae, Gustaaf Borghs, Chang Chen
  • Publication number: 20130237021
    Abstract: A method is disclosed for producing Group III-N field-effect devices, such as HEMT, MOSHFET, MISHFET or MESFET devices, comprising two active layers, e.g. a GaN/AlGaN layer. The method produces an enhancement mode device of this type, i.e. a normally-off device, by providing a passivation layer on the AlGaN layer, etching a hole in the passivation layer and not in the layers underlying the passivation layer, and depositing the gate contact in the hole, while the source and drain are deposited directly on the passivation layer. The characteristics of the active layers and/or of the gate are chosen such that no two-dimensional electron gas layer is present underneath the gate, when a zero voltage is applied to the gate. A device with this behavior is also disclosed.
    Type: Application
    Filed: February 27, 2013
    Publication date: September 12, 2013
    Applicants: Katholieke Universiteit Leuven, IMEC
    Inventors: Joff Derluyn, Steven Boeykens, Marianne Germain, Gustaaf Borghs
  • Patent number: 8437001
    Abstract: A method for forming a nanostructure penetrating a layer and the device made thereof is disclosed. In one aspect, the device has a substrate, a layer present thereon, and a nanostructure penetrating the layer. The nanostructure defines a nanoscale passageway through which a molecule to be analyzed can pass through. The nanostructure has, in cross-sectional view, a substantially triangular shape. This shape is particularly achieved by growth of an epitaxial layer having crystal facets defining tilted sidewalls of the nanostructure. It is highly suitably for use for optical characterization of molecular structure, particularly with surface plasmon enhanced transmission spectroscopy.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 7, 2013
    Assignees: IMEC, Katholieke Universiteit Leuven
    Inventors: Kai Cheng, Pol Van Dorpe, Liesbet Lagae, Gustaaf Borghs, Chang Chen
  • Patent number: 8399911
    Abstract: A method is disclosed for producing Group III-N field-effect devices, such as HEMT, MOSHFET, MISHFET or MESFET devices, comprising two active layers, e.g. a GaN/AlGaN layer. The method produces an enhancement mode device of this type, i.e. a normally-off device, by providing a passivation layer on the AlGaN layer, etching a hole in the passivation layer and not in the layers underlying the passivation layer, and depositing the gate contact in the hole, while the source and drain are deposited directly on the passivation layer. The characteristics of the active layers and/or of the gate are chosen such that no two-dimensional electron gas layer is present underneath the gate, when a zero voltage is applied to the gate. A device with this behavior is also disclosed.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: March 19, 2013
    Assignee: IMEC
    Inventors: Joff Derluyn, Steven Boeykens, Marianne Germain, Gustaaf Borghs
  • Patent number: 8198390
    Abstract: A water soluble functional polyethylene glycol-grafted polysiloxane polymer comprising a polysiloxane backbone and polyethylene glycol side chains is provided having the general formula: wherein A is selected from the group consisting of hydrogen, methyl, methoxy and functional polyethylene glycol based chains, B is a functional group for binding biologically-sensitive materials, D is a functional group for binding to a substrate, m is from 3 to 5, v is from 0 to 5, w is from 4 to 11, x is from 0 to 35 and z is from 1 to 33. In order to be water soluble, the polysiloxane polymer h the following properties: x+y+z is from 8 to 40, n is from 8 to 30, and y is from 7 to 35.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 12, 2012
    Assignee: IMEC
    Inventors: Cheng Zhou, Gustaaf Borghs, Wim Laureyn
  • Publication number: 20120057163
    Abstract: A method for forming a nanostructure penetrating a layer and the device made thereof is disclosed. In one aspect, the device has a substrate, a layer present thereon, and a nanostructure penetrating the layer. The nanostructure defines a nanoscale passageway through which a molecule to be analyzed can pass through. The nanostructure has, in cross-sectional view, a substantially triangular shape. This shape is particularly achieved by growth of an epitaxial layer having crystal facets defining tilted sidewalls of the nanostructure. It is highly suitably for use for optical characterization of molecular structure, particularly with surface plasmon enhanced transmission spectroscopy.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 8, 2012
    Applicants: Katholieke Universiteit Leuven, IMEC
    Inventors: Kai Cheng, Pol Van Dorpe, Liesbet Lagae, Gustaaf Borghs, Chang Chen
  • Publication number: 20110312056
    Abstract: The present invention relates to a population of monodisperse magnetic nanoparticles with a diameter between 1 and 100 nm which are coated with a layer with hydrophilic end groups. Herein the layer with hydrophilic end groups comprises an inner layer of monosaturated and/or monounsaturated fatty acids bound to said nanoparticles and bound to said fatty acids, an outer layer of a phospholipid conjugated to a monomethoxy polyethyleneglycol (PEG) comprising a hydrophilic end group, or comprises a covalently bound hydrophilic layer bound to said nanoparticles.
    Type: Application
    Filed: May 19, 2011
    Publication date: December 22, 2011
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: Deepak Balaji Thimiri Govinda Raj, Liesbet Lagae, Wim Annaert, Gustaaf Borghs
  • Publication number: 20110249259
    Abstract: Methods and apparatus in the field of single molecule sensing are described, e.g. for molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides. Molecular spectroscopy on a molecule translocating through a solid-state nanopore is described. Optical spectroscopic signals are enhanced by plasmonic field-confinement and antenna effects and probed in transmission by plasmon-enabled transmission of light through an optical channel that overlaps with the physical channel.
    Type: Application
    Filed: December 9, 2009
    Publication date: October 13, 2011
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: Pol Van Dorpe, Iwijn De Vlaminck, Liesbet Lagae, Gustaaf Borghs
  • Patent number: 8017509
    Abstract: The present invention relates a method for forming a monocrystalline GeN layer (4) on a substrate (1) comprising at least a Ge surface (3). The method comprises, while heating the substrate (1) to a temperature between 550° C. and 940° C., exposing the substrate (1) to a nitrogen gas flow. The present invention furthermore provides a structure comprising a monocrystalline GeN layer (4) on a substrate (1). The monocrystalline GeN formed by the method according to embodiments of the invention allows passivation of surface states present at the Ge surface (3).
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: September 13, 2011
    Assignees: IMEC, Vrije Universiteit Brussel
    Inventors: Ruben Lieten, Stefan Degroote, Gustaaf Borghs
  • Publication number: 20110089520
    Abstract: The present invention relates a method for forming a monocrystalline GeN layer (4) on a substrate (1) comprising at least a Ge surface (3). The method comprises, while heating the substrate (1) to a temperature between 550° C. and 940° C., exposing the substrate (1) to a nitrogen gas flow. The present invention furthermore provides a structure comprising a monocrystalline GeN layer (4) on a substrate (1). The monocrystalline GeN formed by the method according to embodiments of the invention allows passivation of surface states present at the Ge surface (3).
    Type: Application
    Filed: July 20, 2007
    Publication date: April 21, 2011
    Inventors: Ruben Lieten, Stefan Degroote, Gustaaf Borghs
  • Patent number: 7902820
    Abstract: Certain inventive aspects provide local field imaging with high spatial, time and field resolution by using an array of Hall effect sensors that can be individually read out. The design combines semiconductor Hall sensors and switches that isolate the addressed Hall sensor from the rest of the array. The compact design allows for large and very dense Hall sensor arrays that can be read out in a straightforward way.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: March 8, 2011
    Assignees: IMEC, Katholieke Universiteit Leuven
    Inventors: Koen Vervaeke, Gustaaf Borghs, Victor V. Moshchalkov
  • Publication number: 20100204415
    Abstract: A water soluble functional polyethylene glycol-grafted polysiloxane polymer comprising a polysiloxane backbone and polyethylene glycol side chains is provided having the general formula: wherein A is selected from the group consisting of hydrogen, methyl, methoxy and functional polyethylene glycol based chains, B is a functional group for binding biologically-sensitive materials, D is a functional group for binding to a substrate, m is from 3 to 5, v is from 0 to 5, w is from 4 to 11, x is from 0 to 35 and z is from 1 to 33. In order to be water soluble, the polysiloxane polymer h the following properties: x+y+z is from 8 to 40, n is from 8 to 30, and y is from 7 to 35.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: IMEC
    Inventors: Cheng Zhou, Gustaaf Borghs, Wim Laureyn
  • Patent number: 7728094
    Abstract: A water soluble functional polyethylene glycol-grafted polysiloxane polymer comprising a polysiloxane backbone and polyethylene glycol side chains is provided having the general formula: wherein A is selected from the group consisting of hydrogen, methyl, methoxy and functional polyethylene glycol based chains, B is a functional group for binding biologically-sensitive materials, D is a functional group for binding to a substrate, m is from 3 to 5, v is from 0 to 5, w is from 4 to 11, x is from 0 to 35 and z is from 1 to 33. In order to be water soluble, the polysiloxane polymer h the following properties: x+y+z is from 8 to 40, n is from 8 to 30, and y is from 7 to 35.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: June 1, 2010
    Assignee: IMEC
    Inventors: Cheng Zhou, Gustaaf Borghs, Wim Laureyn
  • Patent number: 7719280
    Abstract: A detection system having a receiver for detecting a material having a magnetic resonance response to illumination by pulses of ultra-wideband (UWB) electromagnetic radiation is disclosed. The receiver comprises a detector for detecting the pulses after they have interacted with the material, and a discriminator arranged to identify in the detected pulses the magnetic resonance response of the material. By scanning an item tagged with a tag having a material having a magnetic resonant response, by illuminating the item with UWB pulses and identifying in detected pulses the magnetic resonance response of the material, items can be located, imaged, or activated. The magnetic resonance response of the tag can cause activation of the tag. The tag can have a magnetic resonance response arranged to provide an identifiable magnetic resonance signature such that different tags can be identified and distinguished by their signatures.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 18, 2010
    Assignee: IMEC
    Inventors: Liesbet Lagae, Gustaaf Borghs
  • Publication number: 20080252293
    Abstract: A detection system having a receiver for detecting a material having a magnetic resonance response to illumination by pulses of ultra-wideband (UWB) electromagnetic radiation is disclosed. The receiver comprises a detector for detecting the pulses after they have interacted with the material, and a discriminator arranged to identify in the detected pulses the magnetic resonance response of the material. By scanning an item tagged with a tag having a material having a magnetic resonant response, by illuminating the item with UWB pulses and identifying in detected pulses the magnetic resonance response of the material, items can be located, imaged, or activated. The magnetic resonance response of the tag can cause activation of the tag. The tag can have a magnetic resonance response arranged to provide an identifiable magnetic resonance signature such that different tags can be identified and distinguished by their signatures.
    Type: Application
    Filed: May 17, 2007
    Publication date: October 16, 2008
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Liesbet Lagae, Gustaaf Borghs