Patents by Inventor Guy A. Sbriglia

Guy A. Sbriglia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160090430
    Abstract: Poly(ethylene tetrafluoroethylene) (ETFE) polymers having an average molecular weight of at least 300,000 g/mol and a melt enthalpy of at least 57 J/g are provided. The ETFE polymer may include at least one additional comonomer. The ETFE polymer is used to form a porous tape or membrane that has a node and fibril structure. A porous ETFE tape may be formed by lubricating the ETFE polymer and subjecting the lubricated polymer to pressure at a temperature below the melting point of the ETFE polymer. Optionally, the ETFE tape may be expanded at a temperature below the melting temperature of the ETFE polymer to form an expanded ETFE membrane. Alternatively, the ETFE polymer may subjected to heat and pressure without the addition of a lubricant to form a dense preform. The dense preform may be subsequently slit in a length direction and stretched to form a dense ETFE fiber.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 31, 2016
    Inventor: Guy A. Sbriglia
  • Publication number: 20160075854
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20160032071
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20160032044
    Abstract: PLA polymers that can be expanded into microporous articles having a node and fibril microstructure are provided. The fibrils contain PLA polymer chains oriented with the fibril axis. Additionally, the PLA polymers have an inherent viscosity greater than about 3.8 dL/g and a calculated molecular weight greater than about 150,000 g/mol. The PLA polymer article may be formed by bulk polymerization where the PLA bulk polymer is made into a preform that is subsequently expanded at temperatures above the glass transition temperature and below the melting point of the PLA polymer. In an alternate embodiment, a PLA polymer powder is lubricated, the lubricated polymer is subjected to pressure and compression to form a preform, and the preform is expanded to form a microporous article. Both the preform and the microporous article are formed at temperatures above the glass transition temperature and below the melting point of the PLA polymer.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventors: Guy A. Sbriglia, Scott A. Gore
  • Publication number: 20160031130
    Abstract: Polyethylene tetrafluoroethylene) (ETFE) polymers having an average molecular weight of at least 300,000 g/mol and a melt enthalpy of at least 57 J/g are provided. The ETFE polymer may include at least one additional comonomer. The ETFE polymer is used to form a porous tape or membrane that has a node and fibril structure. A porous ETFE tape may be formed by lubricating the ETFE polymer and subjecting the lubricated polymer to pressure at a temperature below the melting point of the ETFE polymer. Optionally, the ETFE tape may be expanded at a temperature below the melting temperature of the ETFE polymer to form an expanded ETFE membrane. Alternatively, the ETFE polymer may subjected to heat and pressure without the addition of a lubricant to form a dense preform. The dense preform may be subsequently slit in a length direction and stretched to form a dense ETFE fiber.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventor: Guy A. Sbriglia
  • Publication number: 20160032069
    Abstract: Polyparaxylylene (PPX) polymers that can be expanded into porous articles that have a node and fibril microstructure are provided. The fibrils contain PPX polymer chains oriented with the fibril axis. The PPX polymer may contain one or more comonomer. PPX polymer articles may be formed by applying PPX to a substrate by vapor deposition. The nominal thickness of the PPX polymer film is less than about 50 microns. The PPX polymer film may be removed from the substrate to form a free-standing PPX polymer film, which may then be stretched into a porous article. Alternatively, a PPX polymer article can be formed by lubricating PPX polymer powder, heating the lubricated powder, and calendering or ram extruding to produce a preform that can subsequently be stretched into a porous article. The heating and expansion temperatures are from about 80° C. to about 220° C. or from about 220° C. to about 290° C. or from about 290° C. to about 450° C.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventor: Guy A. Sbriglia
  • Publication number: 20140212612
    Abstract: Ultra high molecular weight polyethylene (UHMWPE) polymers that have an average molecular weight of at least 500,000 g/mol and an enthalpy of at least 190 J/g is provided. The UHMWPE polymer may include at least one comonomer. The UHMWPE polymer is used to form a membrane, that, when expanded, has a node and fibril structure. The UHMWPE membrane has an endotherm of about 150° C. associated with the fibrils in the membrane. The membrane has a percent porosity of at least 25%, and in exemplary embodiments, the percent porosity is at least 60%. Additionally, the UHMWPE membrane has a thickness less than 1 mm. An UHMWPE membrane may be formed by lubricating the UHMWPE polymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the UHMWPE polymer to form a tape, and expanding the tape at a temperature below the melting temperature of the UHMWPE polymer.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 31, 2014
    Applicant: W. L. Gore & Associates, Inc.
    Inventor: Guy A. Sbriglia
  • Publication number: 20130112621
    Abstract: A water filtration article has a filtration layer of thickness no larger than 10 microns including porous polytetrafluoroethylene coated with a hydrophilic coating comprising uncrosslinked ethylene-vinyl alcohol copolymer. Methods include water filtration using and manufacture of such a water filtration article.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Inventors: Lei Zheng, Guy Sbriglia