Patents by Inventor Guy Garty

Guy Garty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8619264
    Abstract: In an apparatus and system for focusing optics an objective lens is configured to collect light from a region of an object to be imaged, said region having a feature with a known geometric characteristic, wherein the geometric characteristic is known before the feature is imaged by the optical device. A focusing sensor is configured to observe a shape of the feature and a splitter is configured to split the collected light into a first portion and a second portion, and directing said first portion through a weak cylindrical lens to the focusing sensor. A processor is configured to analyze the observed shape and determine whether the observed shape of the feature has a predetermined relationship to the known geometric characteristic and a mechanism is configured to autofocus the optical device by moving at least one of the objective lens and the object to be imaged in response to the analysis and determination of the processor. In some embodiments, the feature can be a fluorescent bead.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: December 31, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Guy Garty, David J. Brenner, Gerhard Randers-Pehrson
  • Publication number: 20110176051
    Abstract: In an apparatus and system for focusing optics an objective lens is configured to collect light from a region of an object to be imaged, said region having a feature with a known geometric characteristic, wherein the geometric characteristic is known before the feature is imaged by the optical device. A focusing sensor is configured to observe a shape of the feature and a splitter is configured to split the collected light into a first portion and a second portion, and directing said first portion through a weak cylindrical lens to the focusing sensor. A processor is configured to analyze the observed shape and determine whether the observed shape of the feature has a predetermined relationship to the known geometric characteristic and a mechanism is configured to autofocus the optical device by moving at least one of the objective lens and the object to be imaged in response to the analysis and determination of the processor. In some embodiments, the feature can be a fluorescent bead.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 21, 2011
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Gerhard Randers-Pehrson, Guy Garty, David J. Brenner
  • Patent number: 7898673
    Abstract: Systems and methods for focusing optics are disclosed herein. In some embodiments, methods are disclosed for focusing an optical device, wherein the methods can include: collecting light from a region of an object to be imaged with an objective lens, said region having a feature with a known geometric characteristic; splitting the collected light into a first portion and a second portion, and directing said first portion through a weak cylindrical lens to a focusing sensor, and directing said second portion to an imager; observing, with said focusing sensor, a shape of the feature; focusing the optical device by moving at least one of the objective lens and the object to be imaged until the observed shape of the feature has a predetermined relationship to the known geometric characteristic. In some embodiments, the feature can be a fluorescent bead. In some embodiments, the splitting step can be accomplished with a dichroic mirror.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: March 1, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Gerhard Randers-Pehrson, Guy Garty, David J. Brenner
  • Patent number: 7826977
    Abstract: Systems and methods for high-speed image scanning are disclosed herein One aspect of the invention is directed to a method for high speed image scanning. The method for high speed image scanning includes adjusting an object using a positioning element; directing a portion of an image of the object toward a sensor by positioning a first mirror relative to the object, and by positioning a second mirror relative to the object and the first mirror; controlling the positioning element, the position of the first mirror and the position of the second mirror using a processor; and detecting the portion of the image of the object using the sensor positioned relative to the first mirror and the second mirror. In accord with this method, the first mirror directs the portion of the image of the object in a first direction and the second mirror directs the portion of the image of the object in a second direction.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: November 2, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Guy Garty, Gerhard Randers-Pehrson, David J. Brenner, Oleksandra V. Lyulko
  • Patent number: 7822249
    Abstract: Systems and methods for high-throughput radiation biodosimetry are disclosed herein.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 26, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Guy Garty, David J. Brenner, Gerhard Randers-Pehrson, Y. Lawrence Yao, Nabil Simaan, Alessio Salerno, Anubha Bhatla, Jian Zhang, Oleksandra V. Lyulko, Aparajita Dutta
  • Patent number: 7787681
    Abstract: Systems and methods for robotic transport are disclosed herein. In some embodiments, robotic systems for transporting biological samples include: a plurality of capillary vessels, in which each capillary vessel can contain a biological sample from a population; a receptacle that can contain the plurality of capillary vessels; a centrifuge; a first robotic device that can transport the receptacle between an input module and the centrifuge; a second robotic device that can transport the receptacle between the centrifuge and a sample harvest location; a cutting device that can cut each of the plurality of capillary vessels; a multi-well plate having a plurality of wells arranged in an array; and a third robotic device that can transfer at least one portion of each of the plurality of biological samples from each of the plurality of capillary vessels to a corresponding well in the array.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 31, 2010
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Jian Zhang, Alessio Salerno, Nabil Simaan, Y. Lawrence Yao, Gerhard Randers-Pehrson, Guy Garty, Aparajita Dutta, David J. Brenner
  • Publication number: 20090054222
    Abstract: Systems and methods for robotic transport are disclosed herein. In some embodiments, robotic systems for transporting biological samples include: a plurality of capillary vessels, in which each capillary vessel can contain a biological sample from a population; a receptacle that can contain the plurality of capillary vessels; a centrifuge; a first robotic device that can transport the receptacle between an input module and the centrifuge; a second robotic device that can transport the receptacle between the centrifuge and a sample harvest location; a cutting device that can cut each of the plurality of capillary vessels; a multi-well plate having a plurality of wells arranged in an array; and a third robotic device that can transfer at least one portion of each of the plurality of biological samples from each of the plurality of capillary vessels to a corresponding well in the array.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Jian Zhang, Alessio Salerno, Nabil Simaan, Y. Lawrence Yao, Gerhard Randers-Pehrson, Guy Garty, Aparajita Dutta, David J. Brenner
  • Publication number: 20080228404
    Abstract: Systems and methods for high-speed image scanning are disclosed herein One aspect of the invention is directed to a method for high speed image scanning. The method for high speed image scanning includes adjusting an object using a positioning element; directing a portion of an image of the object toward a sensor by positioning a first mirror relative to the object, and by positioning a second mirror relative to the object and the first mirror; controlling the positioning element, the position of the first mirror and the position of the second mirror using a processor; and detecting the portion of the image of the object using the sensor positioned relative to the first mirror and the second mirror. In accord with this method, the first mirror directs the portion of the image of the object in a first direction and the second mirror directs the portion of the image of the object in a second direction.
    Type: Application
    Filed: August 24, 2007
    Publication date: September 18, 2008
    Inventors: Guy Garty, Gerhard Randers-Pehrson, David J. Brenner, Oleksandra V. Lyulko
  • Publication number: 20080181473
    Abstract: Systems and methods for high-throughput radiation biodosimetry are disclosed herein.
    Type: Application
    Filed: August 24, 2007
    Publication date: July 31, 2008
    Inventors: Guy Garty, David J. Brenner, Gerhard Randers-Pehrson, Y. Lawrence Yao, Nabil Simaan, Alessio Salerno, Anubha Bhatla, Jian Zhang, Oleksandra V. Lyulko, Aparajita Dutta
  • Publication number: 20080179301
    Abstract: Systems and methods for etching materials are disclosed herein. Embodiments of the disclosed subject matter include methods for marking at least one capillary, including etching the at least one capillary with a laser, as well as methods for reading the resulting markings using a second laser. Further embodiments incorporate the second laser within a barcode reader. Various embodiments of the disclosed subject matter include capillaries having outer diameters of about 2 mm. In some embodiments, the capillary is moved while the first laser marks the capillary.
    Type: Application
    Filed: August 24, 2007
    Publication date: July 31, 2008
    Inventors: Guy Garty, Gerhard Randers-Pehrson, Anubha Bhatla, Alessio Salerno, Nabil Simaan, Y. Lawrence Yao, David J. Brenner
  • Publication number: 20080151263
    Abstract: Systems and methods for focusing optics are disclosed herein. In some embodiments, methods are disclosed for focusing an optical device, wherein the methods can include: collecting light from a region of an object to be imaged with an objective lens, said region having a feature with a known geometric characteristic; splitting the collected light into a first portion and a second portion, and directing said first portion through a weak cylindrical lens to a focusing sensor, and directing said second portion to an imager; observing, with said focusing sensor, a shape of the feature; focusing the optical device by moving at least one of the objective lens and the object to be imaged until the observed shape of the feature has a predetermined relationship to the known geometric characteristic. In some embodiments, the feature can be a fluorescent bead. In some embodiments, the splitting step can be accomplished with a dichroic mirror.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 26, 2008
    Inventors: Gerhard Randers-Pehrson, Guy Garty, David J. Brenner
  • Patent number: 7081619
    Abstract: A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: July 25, 2006
    Assignees: Loma Linda University, Yeda, Ltd.
    Inventors: Vladimir Bashkirov, Reinhard W. Schulte, Sergei Shchemelinin, Amos Breskin, Rachel Chechik, Guy Garty, Jamie Milligan
  • Publication number: 20050109929
    Abstract: A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system.
    Type: Application
    Filed: July 20, 2004
    Publication date: May 26, 2005
    Inventors: Vladimir Bashkirov, Reinhard Schulte, Sergei Shchemelinin, Amos Breskin, Rachel Chechik, Guy Garty, Jamie Milligan
  • Patent number: 6787771
    Abstract: A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: September 7, 2004
    Assignees: Loma Linda University, Yeda Ltd.
    Inventors: Vladimir Bashkirov, Reinhard W. Schulte, Sergi Shchemelinin, Amos Breskin, Rachel Chechik, Guy Garty, Jamie Milligan
  • Publication number: 20030146759
    Abstract: A nanodosimeter device (15) for detecting positive ions induced in a sensitive gas volume by a radiation field of primary particle, comprising an ionization chamber (10) for holding the sensitive gas volume to be irradiated by the radiation field of primary particles; an ion counter system connected to the ionization chamber (10) for detecting the positive ions which pass through the aperture opening and arrive at the ion counter (12) at an arrival time; a particle tracking system for position-sensitive detection of the primary particles passing through the sensitive gas volume; and a data acquisition system capable of coordinating the readout of all data signals and of performing data analysis correlating the arrival time of the positive ions detected by the ion counter system relative to the position sensitive data of primary particles detected by the particle tracking system.
    Type: Application
    Filed: October 25, 2002
    Publication date: August 7, 2003
    Inventors: Vladimir Bashkirov, Reinhard W Schulte, Sergi Shchemelinin, Amos Breskin, Rachel Chechik, Guy Garty, Jamie Milligan