Patents by Inventor Guy J. Farruggia

Guy J. Farruggia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130276840
    Abstract: Techniques and apparatus inhibit, limit, or remove biofouling and certain inorganic accumulations, to increase the longevity of accurate in-situ oceanographic and other underwater measurements and transducing processes. The invention deters formation of an initial bacterial layer and other precipitation, without harming the environment. The invention integrates an ultrasonic source into a sensor or other device, or its supporting structures. The ultrasonic source vibrates one or more critical surfaces of the device at a frequency and amplitude that dislodge early accumulations, thus preventing the so rest of the fouling sequence. The ultrasonic driver is activated for short periods and low duty cycles, and in some cases preferably while the device is not operating.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 24, 2013
    Inventors: Guy J. Farruggia, Allan B. Fraser, John K. Hudak
  • Patent number: 8473262
    Abstract: Techniques and apparatus inhibit, limit, or remove biofouling and certain inorganic accumulations, to increase the longevity of accurate in-situ oceanographic and other underwater measurements and transducing processes. The invention deters formation of an initial bacterial layer and other precipitation, without harming the environment. The invention integrates an ultrasonic source into a sensor or other device, or its supporting structures. The ultrasonic source vibrates one or more critical surfaces of the device at a frequency and amplitude that dislodge early accumulations, thus preventing the rest of the fouling sequence. The ultrasonic driver is activated for short periods and low duty cycles, and in some cases preferably while the device is not operating.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: June 25, 2013
    Assignee: Areté Associates
    Inventors: Guy J. Farruggia, Allan B. Fraser, John K. Hudak
  • Publication number: 20100042389
    Abstract: Techniques and apparatus inhibit, limit, or remove biofouling and certain inorganic accumulations, to increase the longevity of accurate in-situ oceanographic and other underwater measurements and transducing processes. The invention deters formation of an initial bacterial layer and other precipitation, without harming the environment. The invention integrates an ultrasonic source into a sensor or other device, or its supporting structures. The ultrasonic source vibrates one or more critical surfaces of the device at a frequency and amplitude that dislodge early accumulations, thus preventing the rest of the fouling sequence. The ultrasonic driver is activated for short periods and low duty cycles, and in some cases preferably while the device is not operating.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Inventors: Guy J. Farruggia, Allan B. Fraser, John Hudak
  • Publication number: 20040232923
    Abstract: Liquid conductivity and temperature are measured in respective sensitivity fields that are collocated—i. e., in volumes that nearly match by mathematical, geometrical, or functional criteria. Collocation is as distinct from mere adjacency or proximity; and is with respect to measurement volumes, not measuring hardware. Preferably pressure too is measured with sensitivity very generally collocated to the conductivity and temperature sensitivity. Preferably, respective temporal/spatial bandwidths of the two (or three) sensors are matched. Preferably the pressure sensor is a MEMS transducer, the conductivity sensor is a four-terminal device, the thermometer is a thermistor encapsulated in a silkscreened glass wall, and circuits (1) compensate for time lag between conductivity and temperature measurement, (2) remove artifacts due to detritus in or near either sensor, and (3) derive secondary parameters of the liquid.
    Type: Application
    Filed: December 7, 2001
    Publication date: November 25, 2004
    Applicant: Arete Assoiates
    Inventors: Guy J. Farruggia, Allan B. Fraser
  • Patent number: 6577134
    Abstract: Liquid conductivity and temperature are measured in respective sensitivity fields that are collocated—i. e., in volumes that nearly match by mathematical, geometrical, or functional criteria. Collocation is as distinct from mere adjacency or proximity; and is with respect to measurement volumes, not measuring hardware. Preferably pressure too is measured with sensitivity very generally collocated to the conductivity and temperature sensitivity. Preferably, respective temporal/spatial bandwidths of the two (or three) sensors are matched. Preferably the pressure sensor is a MEMS transducer, the conductivity sensor is a four-terminal device, the thermometer is a thermistor encapsulated in a silkscreened glass wall, and circuits (1) compensate for time lag between conductivity and temperature measurement, (2) remove artifacts due to detritus in or near either sensor, and (3) derive secondary parameters of the liquid.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: June 10, 2003
    Assignee: Areté Associates
    Inventors: Guy J. Farruggia, Allan B. Fraser
  • Publication number: 20020135377
    Abstract: Liquid conductivity and temperature are measured in respective sensitivity fields that are collocated—i. e., in volumes that nearly match by mathematical, geometrical, or functional criteria. Collocation is as distinct from mere adjacency or proximity; and is with respect to measurement volumes, not measuring hardware. Preferably pressure too is measured with sensitivity very generally collocated to the conductivity and temperature sensitivity. Preferably, respective temporal/spatial bandwidths of the two (or three) sensors are matched. Preferably the pressure sensor is a MEMS transducer, the conductivity sensor is a four-terminal device, the thermometer is a thermistor encapsulated in a silkscreened glass wall, and circuits (1) compensate for time lag between conductivity and temperature measurement, (2) remove artifacts due to detritus in or near either sensor, and (3) derive secondary parameters of the liquid.
    Type: Application
    Filed: December 6, 2001
    Publication date: September 26, 2002
    Applicant: Arete Associates
    Inventors: Guy J. Farruggia, Allan B. Fraser
  • Patent number: 6404204
    Abstract: Liquid conductivity and temperature are measured in respective sensitivity fields that are collocated—i. e., in volumes that nearly match by mathematical, geometrical, or functional criteria. Collocation is as distinct from mere adjacency or proximity; and is with respect to measurement volumes, not measuring hardware. Preferably pressure too is measured with sensitivity very generally collocated to the conductivity and temperature sensitivity. Preferably, respective temporal/spatial bandwidths of the two (or three) sensors are matched. Preferably the pressure sensor is a MEMS transducer, the conductivity sensor is a four-terminal device, the thermometer is a thermistor encapsulated in a silkscreened glass wall, and circuits (1) compensate for time lag between conductivity and temperature measurement, (2) remove artifacts due to detritus in or near either sensor, and (3) derive secondary parameters of the liquid.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: June 11, 2002
    Assignee: Areté Associates
    Inventors: Guy J. Farruggia, Allan B. Fraser