Patents by Inventor Guy S. Lipworth

Guy S. Lipworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085623
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 14, 2024
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Publication number: 20240047870
    Abstract: Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
    Type: Application
    Filed: August 21, 2023
    Publication date: February 8, 2024
    Inventor: Guy S. Lipworth
  • Patent number: 11789200
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 17, 2023
    Assignee: Elwah LLC
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K. Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr.
  • Patent number: 11735817
    Abstract: Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: August 22, 2023
    Inventor: Guy S. Lipworth
  • Publication number: 20230155283
    Abstract: Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
    Type: Application
    Filed: September 19, 2022
    Publication date: May 18, 2023
    Inventor: Guy S. Lipworth
  • Patent number: 11476714
    Abstract: Systems and methods are described herein for providing wireless power to a mobile device, such as an aerial mobile device like an unmanned aerial vehicle (UAV). A navigational constraint model may prescribe a navigation path along which a wireless power transmission system can provide wireless power to the mobile device. Deviations from the prescribed path may require the mobile device to self-power. The prescription of a navigation path allows for the use of reduced-complexity wireless power transmitters that are fully capable of servicing the prescribed path. Multiple embodiments of prescribed paths with various limitations and features are set forth herein, along with multiple embodiments of wireless power transmission systems of reduced complexity and functionality to fully service the various embodiments of prescribed paths.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: October 18, 2022
    Assignee: Searete LLC
    Inventors: Lawrence F. Arnstein, Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene
  • Patent number: 11450954
    Abstract: Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: September 20, 2022
    Assignee: Elwha, LLC
    Inventor: Guy S. Lipworth
  • Patent number: 11367936
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: June 21, 2022
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 11183887
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: November 23, 2021
    Assignee: Searete LLC
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 11165287
    Abstract: According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: November 2, 2021
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Publication number: 20210313683
    Abstract: Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventor: Guy S. Lipworth
  • Patent number: 11075463
    Abstract: A metasurface antenna can be configured to focus a paraxial beam, such as a Gaussian beam, on a target within a Fresnel zone region. The focused beam can be used to wirelessly deliver power to the target.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: July 27, 2021
    Assignee: Searete LLC
    Inventors: Guy S. Lipworth, David R. Smith, Yaroslav Urzhumov, Okan Yurduseven
  • Publication number: 20210126330
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Application
    Filed: November 9, 2020
    Publication date: April 29, 2021
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Patent number: 10938249
    Abstract: Systems and methods are provided for various tunable multi-timescale wireless rectification systems. Tunable multi-timescale wireless rectification systems may include multiple feedback control loops, systems, or sub-systems that modify characteristics of components of a wireless rectification system on various timescales. A wireless rectification system may include antennas, impedance-matching components, rectifying devices, DC-to-DC converters, and/or load controllers. Two or more feedback controls may function on different timescales to modify one or more characteristics or functionalities of components of the wireless rectification system in response to monitored AC and/or DC power values at various locations within the wireless rectification system. Feedback controls operating on various timescales may include antenna feedback controls, impedance feedback controls, rectifying feedback controls, and/or DC feedback controls.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: March 2, 2021
    Assignee: Searete LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10916974
    Abstract: According to various embodiments, a moving wireless power receiver is configured to receive power wirelessly based on a prescribed path of the wireless power receiver. A prescribed path that a moving wireless power receiver traverses is identified. Further, at least one element of the wireless power receiver is controlled based on the prescribed path to change an amount of power received at the wireless power receiver from incident power transmitted by one or more wireless power transmitters. Specifically, the at least one element can be controlled to change the amount of power received at the wireless power receiver as either or both a posture and a position of the wireless power receiver change with respect to the one or more wireless power transmitters as the wireless power receiver traverses the prescribed path.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 9, 2021
    Assignee: The Invention Science Fund I LLC
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Publication number: 20210018680
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 21, 2021
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Publication number: 20200395795
    Abstract: According to various embodiments, systems and methods for wirelessly transmitting energy to a moving wireless power receiver in a network of interlinked prescribed paths. A position of a wireless power receiver in a network of interlinked prescribed paths is tracked as the wireless power receiver traverses one or more prescribed paths in the network of interlinked prescribed paths. Energy is wirelessly transmitted from one or more wireless power transmitters to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths. Specifically, the energy is wirelessly transmitted to the wireless power receiver based on the position of the wireless power receiver in the network of interlinked prescribed paths as the wireless power receiver traverses the one or more prescribed paths in the network of interlinked prescribed paths.
    Type: Application
    Filed: September 1, 2020
    Publication date: December 17, 2020
    Inventors: Daniel Arnitz, Lawrence F. Arnstein, Joseph Hagerty, Guy S. Lipworth
  • Patent number: 10833381
    Abstract: The present technology pertains to a system and method of operation of a metamaterial phase shifter having various use applications. In one aspect of the present disclosure, a phase shifter includes a network of tunable impedance elements and a controller. The controller is coupled to the network of tunable impedance elements and configured to receive a phase shift input value and determine a corresponding tuning voltage to be supplied to each tunable impedance element of the network of tunable impedance elements based on the phase shift input value, the network of tunable impedance element being configured to shift a phase of an input signal based on tuning voltages supplied to the network of tunable impedance elements by the controller.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 10, 2020
    Assignee: The Invention Science Fund I LLC
    Inventors: Yaroslav A. Urzhumov, Matthew S. Reynolds, Guy S. Lipworth, Russell J. Hannigan, Daniel Arnitz, Joseph Hagerty
  • Publication number: 20200313466
    Abstract: System and methods are described herein for providing wireless power to a target device, such as a laptop computer, a mobile phone, a vehicle, robot, or an unmanned aerial vehicle or system (UAV) or (UAS). A tunable multi-element transmitter may transmit electromagnetic radiation (EMR) to the target device using any of a wide variety of frequency bands. A location determination subsystem and/or range determination subsystem may determine a relative location, orientation, and/or rotation of the target device. For a target device within a distance range for which a smallest achievable waist of the Gaussian beam of the EMR at an operational frequency is smaller than the multi-element EMR receiver of the target device, a non-Gaussian beamform may be determined to increase efficiency, decrease overheating, reduce spillover, increase total power output of rectenna receivers on the target device, or achieve another target power delivery goal.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 1, 2020
    Inventors: Daniel Arnitz, Jeffrey A. Bowers, Joseph A. Hagerty, Russell J. Hannigan, Guy S. Lipworth, David R. Nash, Matthew S. Reynolds, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 10788624
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 29, 2020
    Assignee: Elwha LLC
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K. Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav Urzhumov, Lowell L. Wood, Jr.