Patents by Inventor Guylaine St. Jean

Guylaine St. Jean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9284391
    Abstract: A polymer having a melt index of from about 0.5 g/10 min to about 4.0 g/10 min and a density of equal to or greater than 0.96 g/cc which when formed into a 1-mil film displays a moisture vapor transmission rate ranging from equal to or greater than about 0 to equal to or about 20% greater than X where X=k1{?61.95377+39.52785(Mz/Mw)?8.16974(Mz/Mw)2+0.55114(Mz/Mw)3}+k2{?114.01555(?)+37.68575(Mz/Mw)(?)?2.89177(Mz/Mw)2(?)}+k3{120.37572(?)2?25.91177(Mz/Mw)(?)2}+k4{18.03254(?)3} when Mw is from about 100 kg/mol to about 180 kg/moL; Mz is from about 300 kg/mol to about 1000 kg/mol; ? is from about 0.01 S to about 0.35 s; k1 is 1 g/100 in2·day; k2 is 1 g/100 in2·day·s; k3 is 1 g/100 in2·day·s2; and k4 is 1 g/100 in2·day·s3.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: March 15, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Guylaine St. Jean, Brooke A. Gill, Deloris R. Gagan
  • Publication number: 20160032027
    Abstract: A bimodal polyethylene copolymer comprising a lower molecular weight (LMW) component and a higher molecular weight (HMW) component, the copolymer having a z-average molecular weight (MZ) of from about 1,000 kg/mol to about 2,500 kg/mol, a weight fraction of the LMW component (LMW fr.) of from about 0.60 to 0.85, a ratio of a weight average molecular weight (MW) of the HMW component (HMW MW) to a MW of the LMW component (LMW MW) of from about 14 to about 25, a zero shear viscosity (?0) of from about 5×105 Pa-s to about 1×107 Pa-s and a HMW MW of from about 800 kg/mol to about 1,500 kg/mol.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 4, 2016
    Inventors: Guylaine St. Jean, Qing Yang, J. Todd Lanier
  • Publication number: 20160024236
    Abstract: Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.
    Type: Application
    Filed: October 7, 2015
    Publication date: January 28, 2016
    Inventors: Ashish M. Sukhadia, Max P. McDaniel, Errun Ding, Guylaine St. Jean, Qing Yang, Daniel G. Hert, Chung Ching Tso
  • Publication number: 20150376312
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 31, 2015
    Inventors: Mark L. Hlavinka, Errun Ding, Paul DesLauriers, Yongwoo Inn, Lili Cui, Qing Yang, Ashish Sukhadia, Guylaine St. Jean, Richard M. Buck
  • Publication number: 20150337059
    Abstract: A first embodiment which is a bimodal polymer having a weight fraction of a lower molecular weight (LMW) component ranging from about 0.25 to about 0.45, a weight fraction of a higher molecular weight (HMW) component ranging from about 0.55 to about 0.75 and a density of from about 0.931 g/cc to about 0.955 g/cc which when tested in accordance with ASTM D1003 using a 1 mil test specimen displays a haze characterized by equation: % Haze=2145?2216*FractionLMW?181*a molecular weight distribution of the LMW component (MWDLMW)?932*a molecular weight distribution of the HMW component(MWDHMW)+27*(FractionLMW*MWDLMW)+1019*(FractionLMW*MWDHMW)+73*(MWDLMW*MWDHMW) wherein fraction refers to the weight fraction of the component in the polymer as a whole.
    Type: Application
    Filed: June 8, 2015
    Publication date: November 26, 2015
    Inventors: Guylaine St. Jean, Elizabeth M. Lanier, J. Todd Lanier, Qing Yang, Brooke A. Gill
  • Publication number: 20150322184
    Abstract: A metallocene-catalyzed polyethylene copolymer having a zero shear viscosity (?o) of from about 1×102 Pa-s to about 5×103 Pa-s and a ratio of a z-average molecular weight to a number average molecular weight (Mz/Mn) of from about 4 to about 15, and when tested in accordance with ASTM F1249 displays a moisture vapor transmission rate of less than or equal to about 0.9 g-mil/100 in2/day. A metallocene-catalyzed polyethylene copolymer which when tested in accordance with ASTM F1249 has a moisture vapor transmission rate (MVTR) that is decreased by at least 5% when compared to an MVTR determined in accordance with ASTM F1249 of an otherwise similar metallocene-catalyzed polyethylene homopolymer.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 12, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Guylaine St. Jean, Qing Yang, Deloris R. Gagan
  • Patent number: 9181370
    Abstract: Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: November 10, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ashish M. Sukhadia, Max P. McDaniel, Errun Ding, Guylaine St. Jean, Qing Yang, Daniel G. Hert, Chung Ching Tso
  • Patent number: 9156970
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 13, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Errun Ding, Paul DesLauriers, Yongwoo Inn, Lili Cui, Qing Yang, Ashish Sukhadia, Guylaine St. Jean, Richard M. Buck
  • Patent number: 9079993
    Abstract: A first embodiment which is a bimodal polymer having a weight fraction of a lower molecular weight (LMW) component ranging from about 0.25 to about 0.45, a weight fraction of a higher molecular weight (HMW) component ranging from about 0.55 to about 0.75 and a density of from about 0.931 g/cc to about 0.955 g/cc which when tested in accordance with ASTM D1003 using a 1 mil test specimen displays a haze characterized by equation: % Haze=2145?2216*FractionLMW?181*a molecular weight distribution of the LMW component (MWDLMW)?932*a molecular weight distribution of the HMW component (MWDHMW)+27*(FractionLMW*MWDLMW)+1019*(FractionLMW*MWDHMW)+73*(MWDLMW*MWDHMW) wherein fraction refers to the weight fraction of the component in the polymer as a whole.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 14, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Guylaine St. Jean, Elizabeth M. Lanier, J. Todd Lanier, Qing Yang, Brooke A. Gill
  • Publication number: 20150175726
    Abstract: Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
    Type: Application
    Filed: March 5, 2015
    Publication date: June 25, 2015
    Inventors: Max P. McDaniel, Ashish M. Sukhadia, Errun Ding, Chung Ching Tso, Albert P. Masino, Qing Yang, Lloyd W. Guatney, Guylaine St. Jean, Daniel G. Hert
  • Publication number: 20150126692
    Abstract: Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Ashish M. Sukhadia, Max P. McDaniel, Errun Ding, Guylaine St. Jean, Qing Yang, Daniel G. Hert, Chung Ching Tso
  • Patent number: 9018329
    Abstract: A unimodal polymer having a melt index of from about 0.5 g/10 min to about 4 g/10 min, a density of equal to or greater than about 0.945 g/cc which when formed into a film displays a moisture vapor transmission rate of less than about 0.55 g-mil/100 in2 in 24 hours as determined in accordance with ASTM F 1249. A unimodal polymer having a melt index of from about 0.5 g/10 min to about 4 g/10 min, a density of equal to or greater than about 0.945 g/cc which when formed into a film displays a moisture vapor transmission rate of less than about 0.44 g-mil/100 in2 in 24 hours as determined in accordance with ASTM F 1249.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 28, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Mark L. Hlavinka, Guylaine St. Jean, Brooke A. Gill
  • Patent number: 9006367
    Abstract: Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: April 14, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Ashish M. Sukhadia, Errun Ding, Chung Ching Tso, Albert P. Masino, Qing Yang, Lloyd W. Guatney, Guylaine St. Jean, Daniel G. Hert
  • Publication number: 20150065669
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Errun Ding, Paul DesLauriers, Yongwoo Inn, Lili Cui, Qing Yang, Ashish Sukhadia, Guylaine St. Jean, Richard M. Buck
  • Patent number: 8957148
    Abstract: A composition comprising a polymer and a wax wherein the polymer has a melt index of from about 0.5 g/10 min to about 4 g/10 min, a density of equal to or greater than about 0.945 g/cc which when formed into a film displays a moisture vapor transmission rate of less than about 0.55 g-mil/100 in2 in 24 hours as determined in accordance with ASTM F 1249.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: February 17, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jim H. Addcox, Guylaine St. Jean
  • Patent number: 8937139
    Abstract: An ethylene polymer having (i) a density defined by equation (1) ?>a?b Log M??(1) where ? is a density of the polymer in g/cc, log M is a log weight average molecular weight of the polymer, a is about 1.0407, and b is about 0.0145; and (ii) a polydispersity index of greater than about 5.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 20, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Guylaine St. Jean, Qing Yang
  • Publication number: 20140256901
    Abstract: An ethylene alpha-olefin copolymer having (a) a density of from about 0.910 g/cc to about 0.940 g/cc; (b) a weight average molecular weight of from about 150,000 g/mol to about 300,000 g/mol; and (c) a melt index at a load of 2.16 kg of from about 0.01 dg/10 min. to about 0.5 dg/min.; wherein a 1 mil blown film formed from the polymer composition is characterized by (i) a Dart Impact strength greater than about 175 g/mil; (ii) an Elmendorf machine direction tear strength greater than about 20 g/mil; and (iii) an Elmendorf transverse direction tear strength greater than about 475 g/mil.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Ashish M. SUKHADIA, Guylaine ST. JEAN, Qing YANG, Max P. MCDANIEL
  • Patent number: 8828529
    Abstract: A unimodal polymeric resin having a density of from about 0.946 g/ml to about 0.97 g/ml and a zero shear viscosity of from about 8×102 Pa-s to about 6×104 Pa-s. A method comprising (a) providing a catalyst system comprising a half-sandwich transition metal complex; (b) contacting the catalyst system with an olefin under conditions suitable to form a polyolefin, wherein the polyolefin is unimodal; and (c) recovering the polyolefin, wherein the polyolefin has a density of from about 0.946 g/ml to about 0.97 g/ml and a zero shear viscosity of from about 8×102 Pa-s to about 6×104 Pa-s. A unimodal polymeric resin having a density of from about 0.946 g/ml to about 0.97 g/ml and a CY-a parameter of from about 0.5 to about 0.6.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 9, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Guylaine St. Jean, Errun Ding, Chung Tso, Qing Yang, Albert P. Masino, Joel L. Martin
  • Publication number: 20140212607
    Abstract: A composition comprising a polymer and a wax wherein the polymer has a melt index of from about 0.5 g/10 min to about 4 g/10 min, a density of equal to or greater than about 0.945 g/cc which when formed into a film displays a moisture vapor transmission rate of less than about 0.55 g-mil/100 in2 in 24 hours as determined in accordance with ASTM F 1249.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jim H. ADDCOX, Guylaine ST. JEAN
  • Publication number: 20140128563
    Abstract: Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Ashish M. Sukhadia, Errun Ding, Chung Ching Tso, Albert P. Masino, Qing Yang, Lloyd W. Guatney, Guylaine St. Jean, Daniel G. Hert