Patents by Inventor H. Allan Steingisser

H. Allan Steingisser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11330994
    Abstract: A catheter includes a proximal shaft, a distal shaft, a pressure sensor, and at least one pressure sensor wire. The proximal shaft is substantially C-shaped such that in cross-section, the proximal shaft includes a first circumferential end, a second circumferential end, and a gap between the first circumferential and circumferential end. The proximal shaft defines a groove configured to receive a guidewire therein. The distal shaft is coupled to the proximal shaft and defines a guidewire lumen therein. The pressure sensor is coupled to the distal shaft. The pressure sensor wire is operably connected to the pressure sensor. A proximal portion of the pressure sensor wire is disposed within a proximal shaft wall of the proximal shaft and a distal portion of the pressure sensor wire is disposed within a distal shaft wall of the distal shaft.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: May 17, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Ronan Rogers, Matthew Fleming, Ronan Finn, Timothy Jones, Francis McEvoy, Joshua Hillas, James Keaveney, Sean Ward, H. Allan Steingisser
  • Publication number: 20190247085
    Abstract: A guide catheter assembly includes a dilator and a guide catheter. The dilator includes a dilator lumen extending from a distal opening at a distal end to a proximal opening at a proximal end, and a side exit port proximal of the distal opening and in communication with the dilator lumen. The guide catheter includes a proximal end, a distal end, and a guide lumen extending therebetween. The dilator and the guide lumen are sized such that the dilator can pass through the guide lumen. The dilator and the guide catheter are sized such that with the proximal end of the dilator generally aligned along an axis with the proximal end of the guide catheter, the distal end of the dilator extends distally past the distal end of the guide catheter and the side exit port is disposed distal of the distal end of the guide catheter.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: H. Allan Steingisser, William Berthiaume, Joseph Berglund, Conor Flannery, Maria Valdovinos
  • Patent number: 10271873
    Abstract: A guide catheter assembly includes a dilator and a guide catheter. The dilator includes a dilator lumen extending from a distal opening at a distal end to a proximal opening at a proximal end, and a side exit port proximal of the distal opening and in communication with the dilator lumen. The guide catheter includes a proximal end, a distal end, and a guide lumen extending therebetween. The dilator and the guide lumen are sized such that the dilator can pass through the guide lumen. The dilator and the guide catheter are sized such that with the proximal end of the dilator generally aligned along an axis with the proximal end of the guide catheter, the distal end of the dilator extends distally past the distal end of the guide catheter and the side exit port is disposed distal of the distal end of the guide catheter.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: April 30, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: H. Allan Steingisser, William Berthiaume, Joseph Berglund, Conor Flannery, Maria Valdovinos
  • Patent number: 10124175
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: November 13, 2018
    Assignee: Medtronic, Inc.
    Inventors: William A Berthiaume, H Allan Steingisser, Don H Tran, Erik Griswold, Brent L Locsin, James C Allan
  • Publication number: 20180256037
    Abstract: A catheter includes a proximal shaft, a distal shaft, a pressure sensor, and at least one pressure sensor wire. The proximal shaft is substantially C-shaped such that in cross-section, the proximal shaft includes a first circumferential end, a second circumferential end, and a gap between the first circumferential and circumferential end. The proximal shaft defines a groove configured to receive a guidewire therein. The distal shaft is coupled to the proximal shaft and defines a guidewire lumen therein. The pressure sensor is coupled to the distal shaft. The pressure sensor wire is operably connected to the pressure sensor. A proximal portion of the pressure sensor wire is disposed within a proximal shaft wall of the proximal shaft and a distal portion of the pressure sensor wire is disposed within a distal shaft wall of the distal shaft.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Ronan Rogers, Matthew Fleming, Ronan Finn, Timothy Jones, Francis McEvoy, Joshua Hillas, James Keaveney, Sean Ward, H. Allan Steingisser
  • Patent number: 9877660
    Abstract: Embodiments hereof relate to methods and systems for determining a pressure gradient across a lesion of a vessel without requiring the use of a pharmacological hyperemic agent. A measurement system includes at least an injection catheter and a pressure-sensing instrument or guidewire slidingly disposed through the catheter, the pressure-sensing guidewire including at least one pressure sensor configured to obtain a pressure measurement for use in determining the pressure gradient across the lesion. The catheter is configured to deliver or inject a non-pharmacological fluid, such as saline or blood, across the lesion in order to increase a flow rate there-through, thereby simulating hyperemia without the use of a pharmacological hyperemic agent. Once an increased flow rate that simulates hyperemia is achieved, the pressure sensor of the pressure-sensing guidewire may be utilized to measure the pressure gradient across the lesion in order to assess the severity of the lesion.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 30, 2018
    Assignee: Medtronic Vascular Galway
    Inventors: Barry O'Connell, Colm Connolly, H. Allan Steingisser
  • Patent number: 9867982
    Abstract: A delivery system assembly includes an elongate outer tube, an elongate inner member extending within a lumen of the outer tube, and an articulation sheath surrounding the outer tube between a handle of the assembly and a distal-most portion of the outer tube. The outer tube is longitudinally moveable within the sheath; and an inner diameter of the sheath is preferably smaller than that of the handle and the distal-most portion of the outer tube. Navigation of the assembly through a venous system, for deployment of an implantable medical device, is facilitated by deflection of the sheath, to orient a distal-most portion of the outer tube, within which an entirety of the medical device is contained/loaded, and by subsequent advancement of the distal-most portion, with respect to the sheath, to move the distal end of the inner member, along with the contained/loaded device into proximity with a target implant site.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 16, 2018
    Assignee: Medtronic, Inc.
    Inventors: William A Berthiaume, H Allan Steingisser, Don H Tran, Erik Griswold, Brent L Locsin
  • Patent number: 9861815
    Abstract: A tether subassembly, which may be employed by a tool that deploys an implantable medical device, includes a test segment for verification of adequate fixation of the device at an implant site. When the device is located in proximity to a distal opening of the tube, a tether first length extends through an attachment structure of the device and within an elongate tube of the tool, a tether second length extends alongside the tether first length within the tube, and the test segment is located in proximity to the distal opening. The test segment is configured so that only a tug force, applied to the tether first length, and greater than or equal to a predetermined force, can pull the test segment through an aperture, either of the delivery tool or of the device. The predetermined force corresponds to a minimum adequate fixation force for the device.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Don H Tran, Brent L Locsin, William A Berthiaume, Maria E Valdovinos, H. Allan Steingisser, Erik Griswold
  • Patent number: 9808629
    Abstract: A delivery system assembly includes an outer tube, an inner member, extending within a lumen of the outer tube, and a deflectable shaft, extending within the outer tube lumen and around the inner member; the tube and inner member are longitudinally moveable with respect to the shaft, and a distal end of the inner member is located distal to the shaft within the tube lumen. A medical device can be loaded into the tube lumen, along a distal-most portion of the tube, and contained between the inner member and a distal opening of the tube lumen. Deflecting the shaft orients the distal-most portion for navigation of the assembly, and, when the distal end of the inner member is engaged within the tube lumen, distal movement of the tube, with respect to the shaft, causes similar distal movement of the inner member and the loaded medical device toward an implant site.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: November 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: H. Allan Steingisser, Don H. Tran, William A. Berthiaume, Brent L. Locsin
  • Publication number: 20170113023
    Abstract: A guide catheter assembly includes a dilator and a guide catheter. The dilator includes a dilator lumen extending from a distal opening at a distal end to a proximal opening at a proximal end, and a side exit port proximal of the distal opening and in communication with the dilator lumen. The guide catheter includes a proximal end, a distal end, and a guide lumen extending therebetween. The dilator and the guide lumen are sized such that the dilator can pass through the guide lumen. The dilator and the guide catheter are sized such that with the proximal end of the dilator generally aligned along an axis with the proximal end of the guide catheter, the distal end of the dilator extends distally past the distal end of the guide catheter and the side exit port is disposed distal of the distal end of the guide catheter.
    Type: Application
    Filed: October 26, 2015
    Publication date: April 27, 2017
    Inventors: H. Allan Steingisser, William Berthiaume, Joseph Berglund, Conor Flannery, Maria Valdovinos
  • Patent number: 9283382
    Abstract: A tool of an interventional medical systems system includes a core configured to be temporarily attached to the implantable medical device, as the tool deploys the device to expose a fixation member of the device for engagement with tissue at a target implant site; the core is then employed to verify adequate fixation of the deployed device via a tug test. An operator determines that the device is adequately fixed by the engaged fixation member, if a tug force that is applied to the core modifies the temporary attachment between the core and the device, to allow release of the device from the temporary attachment. A tether, which is fixedly attached to the core, may be employed to create the temporary attachment between the core and the device, or the temporary attachment may be created by a snap fit formed between the core and the attachment structure of the device.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: March 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: William A. Berthiaume, Don H. Tran, Brent L. Locsin, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Publication number: 20160067503
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Inventors: William A. Berthiaume, H Allan Steingisser, Don H. Tran, Erik Griswold, Brent L. Locsin, James C. Allan
  • Patent number: 9216293
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 22, 2015
    Assignee: Medtronic, Inc.
    Inventors: William A. Berthiaume, H. Allan Steingisser, Don H. Tran, Erik Griswold, Brent L. Locsin, James C. Allan
  • Publication number: 20150273207
    Abstract: A tether subassembly, which may be employed by a tool that deploys an implantable medical device, includes a test segment for verification of adequate fixation of the device at an implant site. When the device is located in proximity to a distal opening of the tube, a tether first length extends through an attachment structure of the device and within an elongate tube of the tool, a tether second length extends alongside the tether first length within the tube, and the test segment is located in proximity to the distal opening. The test segment is configured so that only a tug force, applied to the tether first length, and greater than or equal to a predetermined force, can pull the test segment through an aperture, either of the delivery tool or of the device. The predetermined force corresponds to a minimum adequate fixation force for the device.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: Don H. Tran, Brent L. Locsin, William A. Berthiaume, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Publication number: 20150273212
    Abstract: A tool of an interventional medical systems system includes a core configured to be temporarily attached to the implantable medical device, as the tool deploys the device to expose a fixation member of the device for engagement with tissue at a target implant site; the core is then employed to verify adequate fixation of the deployed device via a tug test. An operator determines that the device is adequately fixed by the engaged fixation member, if a tug force that is applied to the core modifies the temporary attachment between the core and the device, to allow release of the device from the temporary attachment. A tether, which is fixedly attached to the core, may be employed to create the temporary attachment between the core and the device, or the temporary attachment may be created by a snap fit formed between the core and the attachment structure of the device.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: William A. Berthiaume, Don H. Tran, Brent L. Locsin, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Publication number: 20150148815
    Abstract: A delivery system assembly includes an outer tube, an inner member, extending within a lumen of the outer tube, and a deflectable shaft, extending within the outer tube lumen and around the inner member; the tube and inner member are longitudinally moveable with respect to the shaft, and a distal end of the inner member is located distal to the shaft within the tube lumen. A medical device can be loaded into the tube lumen, along a distal-most portion of the tube, and contained between the inner member and a distal opening of the tube lumen. Deflecting the shaft orients the distal-most portion for navigation of the assembly, and, when the distal end of the inner member is engaged within the tube lumen, distal movement of the tube, with respect to the shaft, causes similar distal movement of the inner member and the loaded medical device toward an implant site.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: H. Allan Steingisser, Don H. Tran, William A. Berthiaume, Brent L. Locsin
  • Publication number: 20150133799
    Abstract: Embodiments hereof relate to methods and systems for determining a pressure gradient across a lesion of a vessel without requiring the use of a pharmacological hyperemic agent. A measurement system includes at least an injection catheter and a pressure-sensing instrument or guidewire slidingly disposed through the catheter, the pressure-sensing guidewire including at least one pressure sensor configured to obtain a pressure measurement for use in determining the pressure gradient across the lesion. The catheter is configured to deliver or inject a non-pharmacological fluid, such as saline or blood, across the lesion in order to increase a flow rate there-through, thereby simulating hyperemia without the use of a pharmacological hyperemic agent. Once an increased flow rate that simulates hyperemia is achieved, the pressure sensor of the pressure-sensing guidewire may be utilized to measure the pressure gradient across the lesion in order to assess the severity of the lesion.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: Medtronic Vascular Galway
    Inventors: Barry O'Connell, Colm Connolly, H. Allan Steingisser
  • Patent number: 8945145
    Abstract: A delivery system assembly includes an elongate inner member that extends distally through a lumen of an elongate outer tube of the assembly; the outer tube is moveable relative to the inner member between first and second positions to deploy an implantable medical device that is held within the outer tube lumen. The inner member may include a flared distal end that abuts, and preferably conforms to, the proximal end of the device, when the device is held within the outer tube lumen. The assembly further includes a stability sheath that surrounds a limited length of the outer tube, in proximity to the handle, to provide an interface for both an operator, who handles the assembly, and for an introducer sheath that provides passage for the assembly into the venous system, so that movement of the outer tube is not hindered by either during device deployment.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Don H. Tran, William A. Berthiaume, H. Allan Steingisser, Maria Valdovinos, Brent L. Locsin, Suruchi Anand
  • Patent number: 8945146
    Abstract: A delivery system assembly includes an outer tube, an inner member, extending within a lumen of the outer tube, and a deflectable shaft, extending within the outer tube lumen and around the inner member; the tube and inner member are longitudinally moveable with respect to the shaft, and a distal end of the inner member is located distal to the shaft within the tube lumen. A medical device can be loaded into the tube lumen, along a distal-most portion of the tube, and contained between the inner member and a distal opening of the tube lumen. Deflecting the shaft orients the distal-most portion for navigation of the assembly, and, when the distal end of the inner member is engaged within the tube lumen, distal movement of the tube, with respect to the shaft, causes similar distal movement of the inner member and the loaded medical device toward an implant site.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: H. Allan Steingisser, Don H. Tran, William A. Berthiaume, Brent L. Locsin
  • Publication number: 20140249543
    Abstract: A delivery system assembly includes an elongate outer tube, an elongate inner member extending within a lumen of the outer tube, and an articulation sheath surrounding the outer tube between a handle of the assembly and a distal-most portion of the outer tube. The outer tube is longitudinally moveable within the sheath; and an inner diameter of the sheath is preferably smaller than that of the handle and the distal-most portion of the outer tube. Navigation of the assembly through a venous system, for deployment of an implantable medical device, is facilitated by deflection of the sheath, to orient a distal-most portion of the outer tube, within which an entirety of the medical device is contained/loaded, and by subsequent advancement of the distal-most portion, with respect to the sheath, to move the distal end of the inner member, along with the contained/loaded device into proximity with a target implant site.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: Medtronic, Inc.
    Inventors: William A. Berthiaume, H. Allan Steingisser, Don H. Tran, Erik Griswold, Brent L. Locsin