Patents by Inventor H. Fisher

H. Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100327661
    Abstract: Described herein are embodiments of a wireless power transmitter for transmitting power to at least one high-Q resonator that includes a high-Q magnetic resonator, a transmit system that creates a driving signal at a frequency that is substantially resonant with said magnetic resonator, and a current sensor, sensing an amount of current that flows through said magnetic resonator and creates a current sense signal indicative thereof and wherein said signal indicative of current is used by said transmit system to change said driving signal based on a characteristic of transmitting by said magnetic resonator.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100277005
    Abstract: Described herein are embodiments of a system for receiving wireless power from a high-Q resonator that include a base for a portable device, having surfaces that are shaped to mechanically hold to outer surfaces of a portable device, and having a high-Q magnetic resonator therein, said resonator formed of a coil portion in series with a capacitive portion, said resonator having an LC value which is tuned to a specified frequency.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 4, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 7825543
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 2, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100264745
    Abstract: Described herein are embodiments of a receiving assembly for a mobile device for receiving power wirelessly from at least one high-Q resonator that includes a receiving high-Q resonator part, tuned to magnetic resonance at a specified frequency, said receiving resonator part including a conductive loop extending around space and material not exceeding the size of the mobile device, and said receiving resonator part including a capacitive structure coupled to said conductive loop; and at least one mobile electronic item, powered by power that is wirelessly received by said receiving high-Q resonator part.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 21, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100253152
    Abstract: Described herein are embodiments of a wireless power transmitter system for transmitting power to at least one high-Q resonator that includes a connection to a source of line power, a modulating part, which converts said line power to create a first frequency of lower than 1 MHz, and a transmitter part, including a transmitting high-Q resonator formed of a conductive loop with a capacitor that brings said high-Q resonator to resonance at said first frequency, and which produces a magnetic field based on said source of line power, said transmitter part having a Q factor at said frequency, where said Q factor is at least 300.
    Type: Application
    Filed: March 4, 2010
    Publication date: October 7, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237707
    Abstract: Described herein are embodiments of a transmitter system for transmitting wireless electrical power, that includes a source which creates an output electrical signal having a specified frequency, a coupling part, directly connected to said source, said coupling part formed of a first loop of wire which is matched for optimal power transfer to said source, and a high-Q magnetic resonator part, spaced from said coupling part such that it is not directly connected to said coupling part, but magnetically coupled to a magnetic field created by said coupling part, receiving power wirelessly from said coupling part, and said high-Q magnetic resonator part creating a magnetic field based on said power that is wirelessly received, said high-Q magnetic resonator formed of an wire coil having an inductance L, and a capacitance C, and said resonator part having an LC value which is substantially resonant with said specified frequency.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237706
    Abstract: Described herein are embodiments of a wireless power transmission system which includes a wireless source high-Q resonator and power supply, said power supply generating signals at a first frequency, and said high-Q resonator having an inductor formed by a wire, a capacitive part, and said inductive part and capacitive part being resonant with said first frequency, and said resonator having at least one component that renders it resistant to anything other than large metallic structures in its vicinity.
    Type: Application
    Filed: February 19, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237708
    Abstract: In embodiments of the present invention improved capabilities are described for receiving magnetic transmission of power from at least a first high-Q resonator, comprising a wire loop high-Q resonator, having a wire formed into at least one loop forming an inductance and having a capacitance, the wire loop resonator having an LC value tuned for receiving a magnetic field of a first specified frequency, and producing an output based on receiving the magnetic field that includes electrical power. The wire loop resonator may include a first part associated with the wire loop resonator which increases the coupling between the first high-Q resonator and the wire loop portion of said resonator without increasing the radius of the wire loop resonator.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100231053
    Abstract: Described herein are embodiments of a system that includes a first system including a high-Q resonator of a first size, transmitting wireless power via a magnetic field; and a repeater high-Q resonator, of a second size, transmitting said wireless power in an area.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100225175
    Abstract: Described herein are embodiments of forming a wireless power transfer system which include locating a source high-Q resonator on one side of a solid object, where the solid object may be an object from the group consisting of a solid non-conducting wall, or a solid non-conducting window, locating a receiving high-Q resonator on the other side of the solid object, aligning a first position of the source resonator with a second position of the receiving resonator, and using the source resonator to create a magnetic field, and using the receiving resonator to receive the magnetic field, and to produce an output that includes power based on said receiving the magnetic field.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 9, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100222686
    Abstract: Provided herein are embodiments of a miniature wireless biomedical telemetry device along with systems and methods for its use. A miniature amplifier and transmitter allow recording of physiological signals from small animals, such as rats, mice and birds, as well as humans. The device is positioned externally and is easily replaceable, as is its battery, so surgical complications and other problem problems are minimized.
    Type: Application
    Filed: October 2, 2008
    Publication date: September 2, 2010
    Applicant: University of Utah Research Foundation
    Inventors: John H. Fisher, F. Edward Dudek
  • Publication number: 20100201205
    Abstract: Described herein are embodiments of forming a wireless power transfer system which uses at least two high-Q magnetically resonant elements, and which have values which are set to acceptable levels of electric and magnetic field strength and radiated power.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 12, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100181844
    Abstract: Described herein are embodiments of a wireless power system that include a signal generator, having a connection to a source of power, and which creates a substantially unmodulated signal at a first frequency, a transmitting high-Q resonator, generating a magnetic field having said first frequency and based on power created by said signal generator, a receiving high-Q resonator, receiving a magnetic power signal created by said transmitting resonator, said receiving resonator being a distance greater than 1 m spaced from said transmitting resonator, and a load receiving part, receiving power from said receiving resonator, wherein a transfer efficiency between said transmitting resonator and said receiving resonator is greater than 25% at 1 m of distance between said transmitting resonator and said receiving resonator.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 22, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100171370
    Abstract: Described herein are embodiments of a wireless power transmitter device for transmitting power to at least one high-Q resonator that includes a first portion, formed of a high-Q magnetic resonator, and a high frequency generation system, having a number of components, wherein at least one of said components is formed using a process which creates nanoscale features.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100130504
    Abstract: The present invention is directed to compounds which are inhibitors of the dipeptidyl peptidase-IV enzyme (“DP-IV inhibitors”) and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-IV enzyme is involved, such as diabetes and particularly type 2 diabetes. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the prevention or treatment of such diseases in which the dipeptidyl peptidase-IV enzyme is involved.
    Type: Application
    Filed: January 27, 2010
    Publication date: May 27, 2010
    Inventors: Scott D. Edmondson, Michael H. Fisher, Dooseop Kim, Malcolm Maccoss, Emma R. Parmee, Ann E. Weber, Jinyou Xu
  • Publication number: 20100117456
    Abstract: Described herein are embodiments of transmitting power wirelessly that include driving a high-Q non-radiative resonator at a value near its resonant frequency to produce a magnetic field output, said non-radiative-resonator formed of a combination of resonant parts, including at least an inductive part formed by a wire loop, and a capacitor part that is separate from a material forming the inductive part, and maintaining at least one characteristic of said resonator such that its usable range has a usable distance over which power can be received, which-distance is set by a detuning effect when a-second resonator gets too close to said resonator.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 7632451
    Abstract: The print head and screen assembly of a Semi-Automatic Screen Printer is raised above its normal printing height and selective attachment of several different fixtures on the nest plate for holding the substrate in a desired position during a screen printing operation for printing gold on LTCC substrates.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: December 15, 2009
    Assignee: Northrop Grumman Corporation
    Inventors: Marissa A. O'Donnell, Cynthia W. Berry, Rena Y. Jacobson, Wayne A. Smythe, Glenn A. Cooke, Shane H. Dennison, Robert H. Fisher
  • Publication number: 20090281230
    Abstract: The invention pertains to low profile additives (“LPA”) comprising branched polymers having a weight average molecular weight (Mw) of at least about 20,000 grams/mole and a number average molecular weight (Mn) of at least about 3,000 grams/mole and methods for making the LPAs. The invention further concerns compositions comprising LPAs synthesized from one or more difunctional monomers and one or more branching agents. Also, disclosed are thermosettable resinous compositions and molded articles comprising the LPAs.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 12, 2009
    Applicant: Ashland Licensing and Intellectual Property LLC
    Inventors: Husam A.A. Rasoul, Dejan D. Andjelkovic, Dennis H. Fisher
  • Publication number: 20090248503
    Abstract: Transmitting targeted advertisements over a communications network to consumers using a plurality of programmable transmitting and receiving devices is accomplished by initiating the programmable transmitting and receiving devices and prompting an advertisement content user to provide and populate the memory of the programmable transmitting and receiving devices with categories, parameters, restrictions and requirements of goods and services to be advertised to consumers and then enabling the programmable transmitting and receiving devices to transmit and receive broadcast advertisements. A portion of the transmission enabled transmitting and receiving devices are placed in proximity to goods and services which are advertised and a portion of receiving enabled transmitting and receiving devices are carried by consumers who when in the proximity of the advertised goods and services, receive advertisements via the receiving enabled device.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carl H. Fisher, Rick A. Hamilton, II, Robert M. Parmer, James E. Seaman
  • Patent number: 7589116
    Abstract: Biaryl substituted pyrazole compounds are sodium channel blockers useful for the treatment of pain and other conditions. Pharmaceutical compositions comprise an effective amount of the instant compounds, either alone, or in combination with one or more therapeutically active compounds, and a pharmaceutically acceptable carrier. Methods of treatment of conditions, including acute pain, chronic pain, visceral pain, inflammatory pain, and neuropathic pain, comprise administering an effective amount of the present compounds, either alone, or in combination with one or more therapeutically active compounds.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: September 15, 2009
    Assignee: Merck & Co. Inc.
    Inventors: Prasun K. Chakravarty, Michael H. Fisher, Jeffrey M. Fisher, legal representative, William H. Parsons, Sriram Tyagarajan, Bishan Zhou