Patents by Inventor Hadi Abdul-Ridha

Hadi Abdul-Ridha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7719041
    Abstract: According to one embodiment of the invention, a method for fabricating a MIM capacitor in a semiconductor die includes a step of depositing a first interconnect metal layer. The method further includes depositing a high-k dielectric layer comprising AlNX (aluminum nitride) on the first interconnect layer. The method further includes depositing a layer of MIM capacitor metal on the high-k dielectric layer. The method further includes etching the layer of MIM capacitor metal to form an upper electrode of the MIM capacitor. According to this exemplary embodiment, the first interconnect metal layer, the high-k dielectric layer, and the layer of MIM capacitor metal can be deposited in a PVD process chamber. The method further includes etching the high-k dielectric layer to form a MIM capacitor dielectric segment and etching the first interconnect metal layer to form a lower electrode of the MIM capacitor.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: May 18, 2010
    Assignee: Newport Fab, LLC
    Inventors: Hadi Abdul-Ridha, David Howard
  • Patent number: 7709949
    Abstract: A method of patterning a metal layer in a semiconductor die comprises forming a mask on the metal layer to define an open region and a dense region. The method further comprises etching the metal layer at a first etch rate to form a number of metal segments in the open region and etching the metal layer at a second etch rate to form a number of metal segments in the dense region, where the first etch rate is approximately equal to the second etch rate. The method further comprises performing a number of strip/passivate cycles to remove a polymer formed on sidewalls of the metal segments in the dense region. The sidewalls of the metal segments in the dense region undergo substantially no undercutting and residue is removed from the sidewalls of the metal segments in the dense region.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: May 4, 2010
    Assignee: Newport Fab, LLC
    Inventors: Tinghao F. Wang, Dieter Dornisch, Julia M. Wu, Hadi Abdul-Ridha, David J. Howard
  • Publication number: 20090243114
    Abstract: A method of patterning a metal layer in a semiconductor die comprises forming a mask on the metal layer to define an open region and a dense region. The method further comprises etching the metal layer at a first etch rate to form a number of metal segments in the open region and etching the metal layer at a second etch rate to form a number of metal segments in the dense region, where the first etch rate is approximately equal to the second etch rate. The method further comprises performing a number of strip/passivate cycles to remove a polymer formed on sidewalls of the metal segments in the dense region. The sidewalls of the metal segments in the dense region undergo substantially no undercutting and residue is removed from the sidewalls of the metal segments in the dense region.
    Type: Application
    Filed: April 22, 2005
    Publication date: October 1, 2009
    Inventors: Tinghao F. Wang, Dieter Dornisch, Julia M. Wu, Hadi Abdul-Ridha, David J. Howard
  • Patent number: 7220639
    Abstract: According to one embodiment of the invention, a method for fabricating a MIM capacitor in a semiconductor die includes a step of depositing a first interconnect metal layer. The method further includes depositing a high-k dielectric layer comprising AlNX (aluminum nitride) on the first interconnect layer. The method further includes depositing a layer of MIM capacitor metal on the high-k dielectric layer. The method further includes etching the layer of MIM capacitor metal to form an upper electrode of the MIM capacitor. According to this exemplary embodiment, the first interconnect metal layer, the high-k dielectric layer, and the layer of MIM capacitor metal can be deposited in a PVD process chamber. The method further includes etching the high-k dielectric layer to form a MIM capacitor dielectric segment and etching the first interconnect metal layer to form a lower electrode of the MIM capacitor.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: May 22, 2007
    Assignee: Newport Fab, LLC
    Inventors: Hadi Abdul-Ridha, David Howard
  • Publication number: 20060252218
    Abstract: According to one embodiment of the invention, a method for fabricating a MIM capacitor in a semiconductor die includes a step of depositing a first interconnect metal layer. The method further includes depositing a high-k dielectric layer comprising AlNX (aluminum nitride) on the first interconnect layer. The method further includes depositing a layer of MIM capacitor metal on the high-k dielectric layer. The method further includes etching the layer of MIM capacitor metal to form an upper electrode of the MIM capacitor. According to this exemplary embodiment, the first interconnect metal layer, the high-k dielectric layer, and the layer of MIM capacitor metal can be deposited in a PVD process chamber. The method further includes etching the high-k dielectric layer to form a MIM capacitor dielectric segment and etching the first interconnect metal layer to form a lower electrode of the MIM capacitor.
    Type: Application
    Filed: May 3, 2005
    Publication date: November 9, 2006
    Inventors: Hadi Abdul-Ridha, David Howard
  • Patent number: 6919272
    Abstract: A method of patterning a metal layer in a semiconductor die comprises forming a mask on the metal layer to define an open region and a dense region. The method further comprises etching the metal layer at a first etch rate to form a number of metal segments in the open region and etching the metal layer at a second etch rate to form a number of metal segments in the dense region, where the first etch rate is approximately equal to the second etch rate. The method further comprises performing a number of strip/passivate cycles to remove a polymer formed on sidewalls of the metal segments in the dense region. The sidewalls of the metal segments in the dense region undergo substantially no undercutting and residue is removed from the sidewalls of the metal segments in the dense region.
    Type: Grant
    Filed: February 1, 2003
    Date of Patent: July 19, 2005
    Assignee: Newport Fab, LLC
    Inventors: Tinghao F. Wang, Dieter Dornisch, Julia M. Wu, Hadi Abdul-Ridha, David J. Howard
  • Patent number: 6836400
    Abstract: A method for fabrication of ceramic tantalum nitride and improved structures based thereon is disclosed. According to the disclosed method, an ionized metal plasma (“IMP”) tool is used to create a plasma containing tantalum ions where the plasma is sustained by a mixture of nitrogen and argon gases. The percentage of nitrogen partial flow in the mixture of gases is adjusted so as to result in a layer of tantalum nitride with a nitrogen content of at least 30%. With a nitrogen content of at least 30%, the tantalum nitride becomes ceramic. The ceramic tantalum nitride presents a number of advantages. For example, the fabrication of ceramic tantalum nitride can be easily incorporated into fabrication of semiconductor chips using copper as the interconnect metal. Also, ceramic tantalum nitride can be used as an effective etch stop layer.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: December 28, 2004
    Assignee: Newport Fab, LLC
    Inventors: Hadi Abdul-Ridha, David T. Young, Maureen R. Brongo
  • Publication number: 20040152302
    Abstract: A method of patterning a metal layer in a semiconductor die comprises forming a mask on the metal layer to define an open region and a dense region. The method further comprises etching the metal layer at a first etch rate to form a number of metal segments in the open region and etching the metal layer at a second etch rate to form a number of metal segments in the dense region, where the first etch rate is approximately equal to the second etch rate. The method further comprises performing a number of strip/passivate cycles to remove a polymer formed on sidewalls of the metal segments in the dense region. The sidewalls of the metal segments in the dense region undergo substantially no undercutting and residue is removed from the sidewalls of the metal segments in the dense region.
    Type: Application
    Filed: February 1, 2003
    Publication date: August 5, 2004
    Applicant: Newport Fab, LLC dba Jazz Semiconductor
    Inventors: Tinghao F. Wang, Dieter Dornisch, Julia M. Wu, Hadi Abdul-Ridha, David J. Howard
  • Patent number: 6383821
    Abstract: A process for manufacturing a semiconductor device includes the formation of tungsten contact plugs suitable for very small geometry devices. As part of the process a tungsten barrier layer is deposited into vias and covering the walls of the vias by a process of ionized metal plasma deposition. The tungsten layer deposited in this manner provides a barrier layer, adhesion layer, and nucleation layer for the subsequent chemical vapor deposition of tungsten contact plug material. Together the two layers of tungsten form contact plugs having a low resistance even when used in the fabrication of very small geometry devices.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: May 7, 2002
    Assignee: Conexant Systems, Inc.
    Inventors: David T. Young, Hadi Abdul-Ridha, Shao-Wen Hsia, Maureen R. Brongo
  • Publication number: 20010017757
    Abstract: A method for fabrication of ceramic tantalum nitride and improved structures based thereon is disclosed. According to the disclosed method, an ionized metal plasma (“IMP”) tool is used to create a plasma containing tantalum ions where the plasma is sustained by a mixture of nitrogen and argon gases. The percentage of nitrogen partial flow in the mixture of gases is adjusted so as to result in a layer of tantalum nitride with a nitrogen content of at least 30%. With a nitrogen content of at least 30%, the tantalum nitride becomes ceramic. The ceramic tantalum nitride presents a number of advantages. For example, the fabrication of ceramic tantalum nitride can be easily incorporated into fabrication of semiconductor chips using copper as the interconnect metal. Also, ceramic tantalum nitride can be used as an effective etch stop layer.
    Type: Application
    Filed: January 16, 2001
    Publication date: August 30, 2001
    Applicant: Conexant Systems, Inc.
    Inventors: Hadi Abdul-Ridha, David T. Young, Maureen R. Brongo
  • Patent number: 6251796
    Abstract: A method for fabrication of ceramic tantalum nitride and improved structures based thereon is disclosed. According to the disclosed method, an ionized metal plasma (“IMP”) tool is used to create a plasma containing tantalum ions where the plasma is sustained by a mixture of nitrogen and argon gases. The percentage of nitrogen partial flow in the mixture of gases is adjusted so as to result in a layer of tantalum nitride with a nitrogen content of at least 30%. With a nitrogen content of at least 30%, the tantalum nitride becomes ceramic. The ceramic tantalum nitride presents a number of advantages. For example, the fabrication of ceramic tantalum nitride can be easily incorporated into fabrication of semiconductor chips using copper as the interconnect metal. Also, ceramic tantalum nitride can be used as an effective etch stop layer.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: June 26, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Hadi Abdul-Ridha, David T. Young, Maureen R. Brongo