Patents by Inventor Hadiuzzaman Syed

Hadiuzzaman Syed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230231400
    Abstract: A method and device for reducing voltage loads of semiconductor components of an inverter. The method includes: ascertaining a request to charge a battery of an electric system including the battery, the inverter, and an electric machine. The inverter including a series connection including a first and a second semiconductor component, and being configured to convert a direct voltage provided by the battery into an alternating voltage for the electric machine, and adapt a gate voltage of the first semiconductor component and/or of the second semiconductor component to interrupt a current flow between the battery and the electric machine during the charging. A voltage load of a gate oxide layer of the semiconductor components is reduced by decreasing the gate voltages of the first semiconductor component and of the second semiconductor component and/or a voltage load of a drain-source path of the semiconductor components being matched to one another.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventors: Karl Oberdieck, Hadiuzzaman Syed, Manuel Horvath, Marco Graf, Sebastian Strache, Stephan Schwaiger
  • Publication number: 20230231496
    Abstract: An inverter. The inverter includes a first and second transistors, which are a high-side transistor and a low-side transistor of the inverter, and control electronics configured to trigger a first switching operation, in which the first transistor is switched on, wherein the second transistor is in a switched-off state, wherein a parasitic capacitance of the first transistor is discharged during the first switching operation, to trigger a second switching operation, in which the first transistor is switched off or switched on again, wherein the second transistor simultaneously remains in the switched-off state, wherein the parasitic capacitance of the first transistor is already discharged in the second switching operation, to record a time difference which describes a difference between a duration of the first switching operation and a duration of the second switching operation, and to determine a characteristic operating parameter of the first transistor based on the time difference.
    Type: Application
    Filed: January 18, 2023
    Publication date: July 20, 2023
    Inventors: Hadiuzzaman Syed, Nico Wuestemann, Cristino Salcines, Karl Oberdieck
  • Patent number: 9948289
    Abstract: In accordance with an embodiment, method of controlling a switching transistor includes applying a first voltage to a first node of a switchable tank circuit, where the first node is coupled to a control node of the switching transistor, the first voltage has a first polarity with respect to a reference terminal of the switching transistor, and the first voltage is configured to place the switching transistor into a first state. After applying the first voltage, the switchable tank circuit is activated, where a voltage of the first node transitions from the first voltage to a second voltage that is configured to place the switching transistor in a second state different from the first state. The switchable tank circuit is deactivated after the voltage of the first node attains the second polarity.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: April 17, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith Kin Leong, Hadiuzzaman Syed, Chris Notsch
  • Patent number: 9698768
    Abstract: In accordance with an embodiment, a method of operating a switching transistor includes turning-off the switching transistor by transferring charge from a gate-drain capacitance of the switching transistor to a charge storage device, and turning-on the switching transistor by transferring charge from the charge storage device to a gate of the switching transistor. Turning off the switching transistor includes hard-switching and turning-on the switching transistor includes soft-switching.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 4, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Kennith Kin Leong, Hadiuzzaman Syed, Chris Notsch
  • Publication number: 20170019095
    Abstract: In accordance with an embodiment, a method of operating a switching transistor includes turning-off the switching transistor by transferring charge from a gate-drain capacitance of the switching transistor to a charge storage device, and turning-on the switching transistor by transferring charge from the charge storage device to a gate of the switching transistor. Turning off the switching transistor includes hard-switching and turning-on the switching transistor includes soft-switching.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 19, 2017
    Inventors: Kennith Kin Leong, Hadiuzzaman Syed, Chris Notsch
  • Publication number: 20160359481
    Abstract: In accordance with an embodiment, method of controlling a switching transistor includes applying a first voltage to a first node of a switchable tank circuit, where the first node is coupled to a control node of the switching transistor, the first voltage has a first polarity with respect to a reference terminal of the switching transistor, and the first voltage is configured to place the switching transistor into a first state. After applying the first voltage, the switchable tank circuit is activated, where a voltage of the first node transitions from the first voltage to a second voltage that is configured to place the switching transistor in a second state different from the first state. The switchable tank circuit is deactivated after the voltage of the first node attains the second polarity.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Inventors: Kennith Kin Leong, Hadiuzzaman Syed, Chris Notsch