Patents by Inventor Hadrien A. Dyvorne

Hadrien A. Dyvorne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142555
    Abstract: A magnetic resonance imaging (MRI) system and method for acquiring magnetic resonance (MR) images using a pulse sequence implementing driven equilibrium and quadratic phase cycling techniques is provided. The method includes, during a pulse repetition period of a pulse sequence and using a quadratic phase cycling scheme, applying a first RF pulse to deflect a net magnetization vector associated with the subject from a longitudinal plane into a transverse plane; after applying the first RF pulse, applying a first sequence of RF pulses each of which flips the net magnetization vector by approximately 180 degrees within the transverse plane; and after applying the first sequence of RF pulses, applying a second RF pulse to deflect the net magnetization vector from the transverse plane to the longitudinal plane.
    Type: Application
    Filed: December 13, 2023
    Publication date: May 2, 2024
    Applicant: Hyperfine Operations, Inc.
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus
  • Publication number: 20240142556
    Abstract: An apparatus for controlling at least one gradient coil of a magnetic resonance imaging (MRI) system. The apparatus may include at least one computer hardware processor; and at least one computer-readable storage medium storing processor executable instructions that, when executed by the at least one computer hardware processor, cause the at least one computer hardware processor to perform a method. The method may include receiving information specifying at least one target pulse sequence; determining a corrected pulse sequence to control the at least one gradient coil based on the at least one target pulse sequence and a hysteresis model of induced magnetization in the MRI system caused by operation of the at least one gradient coil; and controlling, using the corrected gradient pulse sequence, the at least one gradient coil to generate one or more gradient pulses for imaging a patient.
    Type: Application
    Filed: December 28, 2023
    Publication date: May 2, 2024
    Applicant: Hyperfine Operations, Inc.
    Inventors: Rafael O'Halloran, Cedric Hugon, Laura Sacolick, Hadrien A. Dyvorne
  • Patent number: 11971465
    Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system. The apparatus includes at least one permanent B0 magnet to contribute a magnetic field to the Bo magnetic field for the MRI system and a ferromagnetic frame configured to capture and direct at least some of the magnetic field generated by the B0 magnet. The ferromagnetic frame includes a first post having a first end and a second end, a first multi-pronged member coupled to the first end, and a second multi-pronged member coupled to the second end, wherein the first and second multi-pronged members support the at least one permanent B0 magnet.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 30, 2024
    Assignee: Hyperfine Operations, Inc.
    Inventors: Cedric Hugon, Hadrien A. Dyvorne, Michael Stephen Poole
  • Publication number: 20240125879
    Abstract: Techniques are provided for imaging a subject. The method may comprise receiving an indication to image the subject using an magnetic resonance imaging (MRI) system, and in response to receiving the indication, with at least one controller: generating, using at least one RF coil, an initial MR data set for generating an initial image of the subject; determining, using the initial MR image, a difference in orientation between a current orientation of the subject in the initial MR image and a target orientation of the subject; determining, using the determined difference in orientation, an adjustment to a gradient pulse sequence for controlling at least one gradient coil; applying the determined adjustment to the gradient pulse sequence to obtain an adjusted gradient pulse sequence; generating an adjusted MR data set using the adjusted gradient pulse sequence; and generating a second MR image of the subject using the adjusted MR data set.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 18, 2024
    Applicant: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Rafael O'Halloran, Hadrien A. Dyvorne, Khan Mohammad Siddiqui, Michal Sofka, Prantik Kundu, Tianrui Luo
  • Patent number: 11867787
    Abstract: An apparatus for controlling at least one gradient coil of a magnetic resonance imaging (MRI) system. The apparatus may include at least one computer hardware processor; and at least one computer-readable storage medium storing processor executable instructions that, when executed by the at least one computer hardware processor, cause the at least one computer hardware processor to perform a method. The method may include receiving information specifying at least one target pulse sequence; determining a corrected pulse sequence to control the at least one gradient coil based on the at least one target pulse sequence and a hysteresis model of induced magnetization in the MRI system caused by operation of the at least one gradient coil; and controlling, using the corrected gradient pulse sequence, the at least one gradient coil to generate one or more gradient pulses for imaging a patient.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 9, 2024
    Assignee: Hyperfine Operations, Inc.
    Inventors: Rafael O'Halloran, Cedric Hugon, Laura Sacolick, Hadrien A. Dyvorne
  • Publication number: 20230417852
    Abstract: Techniques for removing artefacts, such as RF interference and/or noise, from magnetic resonance data. The techniques include: obtaining input magnetic resonance (MR) data using at least one radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system; and generating an MR image from input MR data at least in part by using a neural network model to suppress at least one artefact in the input MR data.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Carole LAZARUS, Prantik KUNDU, Sunli TANG, Seyed Sadegh Mohseni SALEHI, Michal SOFKA, Jo SCHLEMPER, Hadrien A. DYVORNE, Rafael O'HALLORAN, Laura SACOLICK, Michael Stephen POOLE, Jonathan M. ROTHBERG
  • Patent number: 11852709
    Abstract: A magnetic resonance imaging (MRI) system and method for acquiring magnetic resonance (MR) images using a pulse sequence implementing driven equilibrium and quadratic phase cycling techniques is provided. The method includes, during a pulse repetition period of a pulse sequence and using a quadratic phase cycling scheme, applying a first RF pulse to deflect a net magnetization vector associated with the subject from a longitudinal plane into a transverse plane; after applying the first RF pulse, applying a first sequence of RF pulses each of which flips the net magnetization vector by approximately 180 degrees within the transverse plane; and after applying the first sequence of RF pulses, applying a second RF pulse to deflect the net magnetization vector from the transverse plane to the longitudinal plane.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: December 26, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Hadrien A. Dyvorne, Laura Sacolick, Rafael O'Halloran, Carole Lazarus
  • Patent number: 11846691
    Abstract: Techniques are provided for imaging a subject. A magnetic resonance imaging (MRI) system may use at least one RF coil to generate an initial MR data set for an initial image of the subject. The MRI system may use the initial MR image to determine a difference in orientation between a current orientation of the subject in the initial MR image and a target orientation of the subject. The MRI system may use the determined difference in orientation to determine an adjustment to a gradient pulse sequence for controlling at least one gradient coil. The MRI system may apply the determined adjustment to the gradient pulse sequence to obtain an adjusted gradient pulse sequence. The MRI system may generate an adjusted MR data set using the adjusted gradient pulse sequence, and a second MR image of the subject using the adjusted MR data set.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: December 19, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Rafael O'Halloran, Hadrien A. Dyvorne, Khan Mohammad Siddiqui, Michal Sofka, Prantik Kundu, Tianrui Luo
  • Patent number: 11841408
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: December 12, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20230384404
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 30, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: HADRIEN A. DYVORNE, Todd Rearick
  • Publication number: 20230366963
    Abstract: Systems and methods are provided herein for determining whether to extend scanning performed by a magnetic resonance imaging (MRI) system. According to some embodiments, there is provided a method for imaging a subject using an MRI system, comprising: obtaining data for generating at least one magnetic resonance image of the subject by operating the MRI system in accordance with a first pulse sequence; prior to completing the obtaining the data in accordance with the first pulse sequence, determining to collect additional data to augment and/or replace at least some of the obtained data; determining a second pulse sequence to use for obtaining the additional data; and after completing the obtaining the data in accordance with the first pulse sequence, obtaining the additional data by operating the MRI system in accordance with the second pulse sequence.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 16, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Carole Lazarus, Rafael O'Halloran, Hadrien A. Dyvorne
  • Publication number: 20230349994
    Abstract: Techniques are described for controlling components of a Magnetic Resonance Imaging (MRI) system with a single controller, such as a Field Programmable Gate Array (FPGA), by dynamically instructing the controller to issue commands to the components using a processor coupled to the controller. According to some aspects, the controller may issue commands to the components of the MRI system whilst actively receiving commands from the processor to be later issued to the components.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 2, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Jonathan Lowthert, Jeremy Christopher Jordan, Hadrien A. Dyvorne
  • Publication number: 20230341494
    Abstract: Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 26, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Carole Lazarus, Rafael O'Halloran, Hadrien A. Dyvorne
  • Patent number: 11789104
    Abstract: Techniques for removing artefacts, such as RF interference and/or noise, from magnetic resonance data. The techniques include: obtaining input magnetic resonance (MR) data using at least one radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system; and generating an MR image from input MR data at least in part by using a neural network model to suppress at least one artefact in the input MR data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: October 17, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Carole Lazarus, Prantik Kundu, Sunli Tang, Seyed Sadegh Mohseni Salehi, Michal Sofka, Jo Schlemper, Hadrien A. Dyvorne, Rafael O'Halloran, Laura Sacolick, Michael Stephen Poole, Jonathan M. Rothberg
  • Publication number: 20230324481
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a Bo magnet configured to produce a Bo magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region is provided.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, JR., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20230324489
    Abstract: Techniques for compensating for presence of eddy currents during the operation of a magnetic resonance imaging (MRI) system in accordance with a pulse sequence, the pulse sequence comprising a gradient waveform associated with a target gradient field. The techniques include: compensating for presence of eddy currents during operation of the MRI system at least in part by correcting the gradient waveform using a nonlinear function of a characteristic of the gradient waveform to obtain a corrected gradient waveform; and operating the MRI system in accordance with the corrected gradient waveform to generate the target gradient field.
    Type: Application
    Filed: May 22, 2023
    Publication date: October 12, 2023
    Applicant: Hyperfine Operations, Inc.
    Inventors: Hadrien A. Dyvorne, Cedric Hugon, Rafael O’Halloran, Laura Sacolick
  • Patent number: 11740309
    Abstract: Systems and methods are provided herein for determining whether to extend scanning performed by a magnetic resonance imaging (MRI) system. According to some embodiments, there is provided a method for imaging a subject using an MRI system, comprising: obtaining data for generating at least one magnetic resonance image of the subject by operating the MRI system in accordance with a first pulse sequence; prior to completing the obtaining the data in accordance with the first pulse sequence, determining to collect additional data to augment and/or replace at least some of the obtained data; determining a second pulse sequence to use for obtaining the additional data; and after completing the obtaining the data in accordance with the first pulse sequence, obtaining the additional data by operating the MRI system in accordance with the second pulse sequence.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: August 29, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Carole Lazarus, Rafael O'Halloran, Hadrien A. Dyvorne
  • Patent number: 11740307
    Abstract: Techniques are described for controlling components of a Magnetic Resonance Imaging (MRI) system with a single controller, such as a Field Programmable Gate Array (FPGA), by dynamically instructing the controller to issue commands to the components using a processor coupled to the controller. According to some aspects, the controller may issue commands to the components of the MRI system whilst actively receiving commands from the processor to be later issued to the components.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: August 29, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Laura Sacolick, Jonathan Lowthert, Jeremy Christopher Jordan, Hadrien A. Dyvorne
  • Patent number: 11714151
    Abstract: Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 1, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Carole Lazarus, Rafael O'Halloran, Hadrien A. Dyvorne
  • Patent number: 11698430
    Abstract: Techniques for compensating for presence of eddy currents during the operation of a magnetic resonance imaging (MRI) system in accordance with a pulse sequence, the pulse sequence comprising a gradient waveform associated with a target gradient field. The techniques include: compensating for presence of eddy currents during operation of the MRI system at least in part by correcting the gradient waveform using a nonlinear function of a characteristic of the gradient waveform to obtain a corrected gradient waveform; and operating the MRI system in accordance with the corrected gradient waveform to generate the target gradient field.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 11, 2023
    Assignee: Hyperfine Operations, Inc.
    Inventors: Hadrien A. Dyvorne, Cedric Hugon, Rafael O'Halloran, Laura Sacolick