Patents by Inventor Hae-Chang Choi
Hae-Chang Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250080752Abstract: An intra prediction mode encoding and decoding method, an image decoding device, and an image encoding device operate by deriving most probable modes (MPMs) from surrounding prediction units adjacent to a current prediction unit and deriving an intra prediction mode of the current prediction unit on the basis of an MPM flag indicating whether an MPM having the same prediction mode as the intra prediction mode of the current prediction unit exists among the derived MPMs.Type: ApplicationFiled: November 19, 2024Publication date: March 6, 2025Applicants: Electronics and Telecommunications Research Institute, Intellectual Discovery Co., Ltd.Inventors: Sung Chang LIM, Hui Yong Kim, Jin Ho Lee, Jin Soo Choi, Jin Woong Kim, Jae Gon Kim, Sang Yong Lee, Hae Chul CHOI
-
Patent number: 12244853Abstract: Disclosed herein are a video decoding method and apparatus and a video encoding method and apparatus. Encoding and decoding of a target block are performed using intra-prediction. The intra-prediction is intra-prediction that uses bidirectional intra-prediction and a remaining mode. In bidirectional intra-prediction, a prediction value for a target pixel in the target block is determined based on reference pixels in two directions of bidirectional intra-prediction. In intra-prediction using a remaining mode, the remaining mode indicates remaining intra-prediction modes other than MPMs present in an MPM list.Type: GrantFiled: November 18, 2021Date of Patent: March 4, 2025Assignees: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE, HANBAT NATIONAL UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATIONInventors: Hyunsuk Ko, Jung-Won Kang, Sung-Chang Lim, Jin-Ho Lee, Ha-Hyun Lee, Dong-San Jun, Hae-Chul Choi, Hui-Yong Kim, A-Ram Back
-
Publication number: 20250071264Abstract: Provided are an imaging encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameter.Type: ApplicationFiled: November 12, 2024Publication date: February 27, 2025Applicant: Electronics and Telecommunications Research InstituteInventors: Sung Chang LIM, Jong Ho KIM, Hae Chul CHOI, Hui Yong KIM, Ha Hyun LEE, Jin Ho LEE, Se Yoon JEONG, Suk Hee CHO, Jin Soo CHOI, Jin Woo HONG, Jin Woong KIM
-
Publication number: 20250071263Abstract: Provided are an imaging encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameter.Type: ApplicationFiled: November 12, 2024Publication date: February 27, 2025Applicant: Electronics and Telecommunications Research InstituteInventors: Sung Chang LIM, Jong Ho KIM, Hae Chul CHOI, Hui Yong KIM, Ha Hyun LEE, Jin Ho LEE, Se Yoon JEONG, Suk Hee CHO, Jin Soo CHOI, Jin Woo HONG, Jin Woong KIM
-
Publication number: 20250071294Abstract: The present invention relates to an image encoding and decoding technique, and more particularly, to an image encoder and decoder using unidirectional prediction. The image encoder includes a dividing unit to divide a macro block into a plurality of sub-blocks, a unidirectional application determining unit to determine whether an identical prediction mode is applied to each of the plurality of sub-blocks, and a prediction mode determining unit to determine a prediction mode with respect to each of the plurality of sub-blocks based on a determined result of the unidirectional application determining unit.Type: ApplicationFiled: November 14, 2024Publication date: February 27, 2025Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Industry-Academic Collaboration Foundation, University-Industry Cooperation Group of Kyung Hee UniversityInventors: Hae Chul CHOI, Se Yoon JEONG, Sung-Chang LIM, Jin Soo CHOI, Jin Woo HONG, Dong Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Gwang Hoon PARK, Seung Ryong KOOK, Sea-Nae PARK, Kwang-Su JEONG
-
Patent number: 12238285Abstract: An image encoding/decoding method is disclosed. An image decoding method of the present invention may comprise identifying a region by partitioning an image, and determining a prediction mode of the region on the basis of at least one of a size of the region, a partition shape, and a coding parameter of the region. The determined prediction mode of the region may be determined as a prediction mode of all coding blocks included in the region.Type: GrantFiled: October 23, 2023Date of Patent: February 25, 2025Assignees: Electronics and Telecommunications Research Institute, HANBAT NATIONAL UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATIONInventors: Ha Hyun Lee, Jung Won Kang, Sung Chang Lim, Jin Ho Lee, Hui Yong Kim, Hae Chul Choi, Dae Hyeok Gwon
-
Patent number: 12212739Abstract: Provided are an image encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameters.Type: GrantFiled: September 27, 2023Date of Patent: January 28, 2025Assignee: Electronics and Telecommunications Research InstituteInventors: Sung Chang Lim, Jong Ho Kim, Hae Chul Choi, Hui Yong Kim, Ha Hyun Lee, Jin Ho Lee, Se Yoon Jeong, Suk Hee Cho, Jin Soo Choi, Jin Woo Hong, Jin Woong Kim
-
Patent number: 12206843Abstract: Provided are an image encoding method and device. When carrying out image encoding for a block within a slice, at least one block in a restored block of the slice is set as a reference block. When this is done, the encoding parameters of the reference block are distinguished, and the block to be encoded is encoded adaptively based on the encoding parameters.Type: GrantFiled: September 27, 2023Date of Patent: January 21, 2025Assignee: Electronics and Telecommunications Research InstituteInventors: Sung Chang Lim, Jong Ho Kim, Hae Chul Choi, Hui Yong Kim, Ha Hyun Lee, Jin Ho Lee, Se Yoon Jeong, Suk Hee Cho, Jin Soo Choi, Jin Woo Hong, Jin Woong Kim
-
Patent number: 7396423Abstract: A welding structural steel product exhibiting a superior heat affected zone toughness, comprising, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 10?N/B?40, 2.5?Al/N?7, and 6.5?(Ti+2Al+4B)/N?14, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less. The method includes the steps of preparing a slab of the above-described composition, heating the slab to 1,100° C. to 1,250° C. for 60-180 minutes, hot rolling the heated slab in an austenite recrystallization range at a 40% or more rolling reduction followed by controlled cooling.Type: GrantFiled: April 14, 2005Date of Patent: July 8, 2008Assignee: POSCOInventors: Hong-Chul Jeong, Hae-Chang Choi
-
Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
Patent number: 7105066Abstract: A welding structural steel product exhibiting a superior heat affected zone toughness, comprising, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% 0.00 1 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.005% 0, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 10?N/B?40, 2.5?Al/N?7, and 6.5?(Ti+2Al+4B)/N?14, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less. The method includes the steps of preparing a slab of the above-described composition, heating the slab to 1,100° C. to 1,250° C. for 60-180 minutes, hot rolling the heated slab in an austenite recrystallization range at a 40% or more rolling reduction followed by controlled cooling.Type: GrantFiled: November 16, 2001Date of Patent: September 12, 2006Assignee: PoscoInventors: Hong-Chul Jeong, Hae-Chang Choi -
Patent number: 6966955Abstract: A weldable structural steel product having TiN and ZrN precipitates, which contains, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.001 to 0.03% Zr, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.01% O, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 0.3?Zr/N?2.0, 10?N/B?40, 2.5?Al/N?7, and 6.8?(Ti+Zr+2Al+4B)/N?17, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less.Type: GrantFiled: November 21, 2001Date of Patent: November 22, 2005Assignee: PoscoInventors: Hae-Chang Choi, Hong-Chul Jeong
-
Patent number: 6946038Abstract: A weldable structural steel product having fine complex precipitates of TiN and MnS is provided which contains, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.05% Si, 1.0 to 2.5% Mn, 0.05 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, 0.003 to 0.05% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 10?N/B?40, 2.5?Al/N?7, 6.5?(Ti+2Al+4B)/N?14, and 220?Mn/S?400. The steel has a microstructure consisting essentially of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less.Type: GrantFiled: November 20, 2001Date of Patent: September 20, 2005Assignee: PoscoInventors: Hong-Chul Jeong, Hae-Chang Choi, Wung-Yong Choo
-
Publication number: 20050173030Abstract: A welding structural steel product exhibiting a superior heat affected zone toughness, comprising, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 10?N/B?40, 2.5?Al/N?7, and 6.5?(Ti+2Al+4B)/N?14, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less. The method includes the steps of preparing a slab of the above-described composition, heating the slab to 1,100° C. to 1,250° C. for 60-180 minutes, hot rolling the heated slab in an austenite recrystallization range at a 40% or more rolling reduction followed by controlled cooling.Type: ApplicationFiled: April 14, 2005Publication date: August 11, 2005Inventors: Hong-Chul Jeong, Hae-Chang Choi
-
Publication number: 20040144454Abstract: Disclosed is a welding structural steel product exhibiting a superior heat affected zone toughness, comprising, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2≦Ti/N≦2.5, 10≦N/B≦40, 2.5≦Al/N≦7, and 6.5≦(Ti+2Al+4B)/N≦14, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 &mgr;m or less.Type: ApplicationFiled: October 30, 2003Publication date: July 29, 2004Inventors: Hong-Chul Jeong, Hae-Chang Choi
-
Patent number: 6686061Abstract: A weldable structural steel product having fine complex precipitates of TiN and CuS is provided which contains, in terms of percent by weight, 0.03 to 0.17%C, 0.01 to 0.05% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, 0.1 to 1.5% Cu, at most 0.03% P, 0.003 to 0.05% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2≦Ti/N≦2.5, 10≦N/B≦40, 2.5≦Al/N≦7, 6.5≦(Ti+2Al+4B)/N≦14, and 10≦Cu/S≦90, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 &mgr;m or less.Type: GrantFiled: July 16, 2002Date of Patent: February 3, 2004Assignee: PoscoInventors: Hong-Chul Jeong, Hae-Chang Choi
-
Publication number: 20030131914Abstract: A welding structural steel product having fine complex precipitates of TiN and CuS is provided which contains, in terms of percent by weight, 0.03 to 0.17%C, 0.01 to 0.05% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, 0.1 to 1.5% Cu, at most 0.03% P, 0.003 to 0.05% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2≦Ti/N≦2.5, 10≦N/B≦40, 2.5≦Al/N≦7, 6.5≦(Ti+2Al+4B)/N≦14, and 10≦Cu/S≦90, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 &mgr;m or less.Type: ApplicationFiled: July 16, 2002Publication date: July 17, 2003Inventors: Hong-Chul Jeong, Hae-Chang Choi
-
Publication number: 20030121577Abstract: A weldable structural steel product having TiN and ZrN precipitates, which contains, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.5% Si, 0.4 to 2.0% Mn, 0.005 to 0.2% Ti, 0.0005 to 0.1% Al, 0.001 to 0.03% Zr, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, at most 0.03% S, at most 0.01% O, and balance Fe and incidental impurities while satisfying conditions of 1.2≦Ti/N≦2.5, 0.3≦Zr/N≦2.0, 10≦N/B≦40, 2.5≦Al/N≦7, and 6.8≦(Ti+Zr+2Al+4B)/N≦17, and having a microstructure essentially consisting of a complex structure of ferrite and pearlite having a grain size of 20 &mgr;m or less.Type: ApplicationFiled: August 13, 2002Publication date: July 3, 2003Inventors: Hae-Chang Choi, Hong-Chul Jeong
-
Publication number: 20030106623Abstract: A weldable structural steel product having fine complex precipitates of TiN and MnS is provided which contains, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.05% Si, 1.0 to 2.5% Mn, 0.05 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, 0.003 to 0.05% S, at most 0.005 % O, and balance Fe and incidental impurities while satisfying conditions of 1.2≦Ti/N≦2.5, 10≦N/B≦40, 2.5≦Al/N≦7, 6.5≦(Ti+2Al+4B)/N≦14, and 220≦Mn/S≦400. The steel has a microstructure consisting essentially of a complex structure of ferrite and pearlite having a grain size of 20 &mgr;m or less.Type: ApplicationFiled: July 26, 2002Publication date: June 12, 2003Inventors: Hong-Chul Jeong, Hae-Chang Choi, Wung-Yong Choo