Patents by Inventor Hae-Weon Lee

Hae-Weon Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9975107
    Abstract: A multi-scaled oxygen storage material wherein cobalt element is complexed with a size of an atom or hundreds of nanometers or smaller in a ceria-zirconia solid solution and a method for preparing the same as provided. Specifically, the multi-scaled oxygen storage material contains a ceria-zirconia solid solution, a cobalt doping contained in the solid solution in the form of an atom and a cobalt-based nanocluster dispersed in the solid solution as cobalt oxide and exhibits a microstructure distinguished from that of the existing ceria-zirconia (CZO)-based oxygen storage material as well as remarkably improved oxygen storage and release ability, and the method for preparing the same is provided.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 22, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul Kim, Hae Weon Lee, Byung Kook Kim, Jong Ho Lee, Ji Won Son, Kyung Joong Yoon, Jong Sup Hong, Seung Hak Song
  • Patent number: 9970118
    Abstract: A method for uniformly forming a nickel-metal alloy catalyst in a fuel electrode of a solid oxide electrolysis cell is provided. Specifically, before the nickel-metal alloy catalyst is formed, a metal oxide is uniformly distributed on nickel oxide contained in the fuel electrode through infiltration of a metal oxide precursor solution and hydrolysis of urea.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: May 15, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Sup Hong, Si Won Kim, Man Soo Park, Hyoung Chul Kim, Kyung Joong Yoon, Ji Won Son, Jong Ho Lee, Hae Weon Lee, Byung Kook Kim
  • Patent number: 9966624
    Abstract: Provided is a method for manufacturing a sintered body for an electrolyte and an electrolyte for a fuel cell using the same. More particularly, the following disclosure relates to a method for preparing an electrolyte having a firm thin film layer by using a sintered body having controlled sintering characteristics, and application of the electrolyte to a solid oxide fuel cell. It is possible to control the sintering characteristics of a sintered body through a simple method, such as controlling the amounts of crude particles and nanoparticles. In addition, an electrode using the obtained sintered body having controlled sintering characteristics is effective for forming a firm thin film layer. Further, such an electrolyte having a firm thin film layer formed thereon inhibits combustion of fuel with oxygen when it is applied to a fuel cell, and thus shows significantly effective for improving the quality of a cell.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: May 8, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyung Joong Yoon, Seung-Hwan Lee, Mansoo Park, Jongsup Hong, Hyoungchul Kim, Ji-Won Son, Jong Ho Lee, Byung Kook Kim, Hae-Weon Lee
  • Publication number: 20180066371
    Abstract: A method for uniformly forming a nickel-metal alloy catalyst in a fuel electrode of a solid oxide electrolysis cell is provided. Specifically, before the nickel-metal alloy catalyst is formed, a metal oxide is uniformly distributed on nickel oxide contained in the fuel electrode through infiltration of a metal oxide precursor solution and hydrolysis of urea.
    Type: Application
    Filed: December 23, 2016
    Publication date: March 8, 2018
    Inventors: Jong Sup HONG, Si Won KIM, Man Soo PARK, Hyoung Chul KIM, Kyung Joong YOON, Ji Won SON, Jong Ho LEE, Hae Weon LEE, Byung Kook KIM
  • Publication number: 20180053966
    Abstract: A method for preparing a sulfide-based solid electrolyte which is stable upon exposure to the air is provided. Specifically, a stabilization layer is formed on the surface of a sulfide-based solid electrolyte particle through treatment with a reactive gas. The sulfide-based solid electrolyte with superior air stability can be obtained because oxidation or reduction reactions with water, etc. in the air occur on the stabilization layer rather than on the sulfide-based solid electrolyte particle.
    Type: Application
    Filed: January 12, 2017
    Publication date: February 22, 2018
    Inventors: Hyoung Chul KIM, Sung Jun CHOI, Jeong Hun KIM, Wo Dum JUNG, Hun Gi JUNG, Ji Won SON, Jong Ho LEE, Byung Kook KIM, Hae Weon LEE
  • Patent number: 9893367
    Abstract: Provided is an interlayer for a thin electrolyte solid oxide cell, a thin electrolyte solid oxide cell including the same, and a method of forming the same. In various embodiments, functional elements (a fuel electrode, an electrolyte and a cathode) of the solid oxide cell are formed by means of a thin film process, and thus a nanostructure of the catalyst is not seriously lost due to agglomeration, different from a powder process. Thus, it is possible to accomplish catalyst activation according to a high specific surface area.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 13, 2018
    Assignees: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, GLOBAL FRONTIER CENTER FOR MULTISCALE ENERGY SYSTEMS
    Inventors: Ji-Won Son, Thieu Cam Anh, Jongsup Hong, Hyoungchul Kim, Kyung Joong Yoon, Jong Ho Lee, Hae-Weon Lee, Byung Kook Kim
  • Publication number: 20180026292
    Abstract: Provided is a method for manufacturing a sintered body for an electrolyte and an electrolyte for a fuel cell using the same. More particularly, the following disclosure relates to a method for preparing an electrolyte having a firm thin film layer by using a sintered body having controlled sintering characteristics, and application of the electrolyte to a solid oxide fuel cell. It is possible to control the sintering characteristics of a sintered body through a simple method, such as controlling the amounts of crude particles and nanoparticles. In addition, an electrode using the obtained sintered body having controlled sintering characteristics is effective for forming a firm thin film layer. Further, such an electrolyte having a firm thin film layer formed thereon inhibits combustion of fuel with oxygen when it is applied to a fuel cell, and thus shows significantly effective for improving the quality of a cell.
    Type: Application
    Filed: November 8, 2016
    Publication date: January 25, 2018
    Inventors: Kyung Joong YOON, Seung-Hwan LEE, Mansoo PARK, Jongsup HONG, Hyoungchul KIM, Ji-Won SON, Jong Ho LEE, Byung Kook KIM, Hae-Weon LEE
  • Publication number: 20170365861
    Abstract: A metal-ceramic composite for a fuel cell anode is disclosed. In the metal-ceramic composite, the content of the metal is greatly reduced and the intervals between the metal particles are maintained constant, achieving improved activity and conductivity. The metal-ceramic composite includes a metal catalyst raw material and a mixed-conductive ceramic. The metal catalyst raw material is present in an amount such that the content of the metal catalyst nanoparticles in the metal-ceramic composite is significantly lower than in conventional metal-ceramic composites. The presence of a small amount of the metal catalyst nanoparticles in the metal-ceramic composite minimizes the occurrence of stress resulting from a change in the volume of the metal catalyst and provides a solution to the problem of defects, achieving improved life characteristics. Also disclosed is a method for preparing the metal-ceramic composite.
    Type: Application
    Filed: August 25, 2016
    Publication date: December 21, 2017
    Inventors: Ji-Won SON, Jung hoon PARK, Jongsup HONG, Hyoungchul KIM, Kyung Joong YOON, Jong Ho LEE, Hae-Weon LEE, Byung Kook KIM
  • Publication number: 20170317381
    Abstract: A method for preparing a lithium ion conductive sulfide, which is capable of independently controlling the elemental ratio of lithium (Li), phosphorus (P), sulfur (S), etc, is provided. The method for preparing a lithium ion conductive sulfide can provide a lithium ion conductive sulfide having a crystal structure and an anion cluster distribution distinguished from those of existing ones.
    Type: Application
    Filed: October 7, 2016
    Publication date: November 2, 2017
    Inventors: Hyoung Chul KIM, Hun Gi JUNG, Jong Ho LEE, Hae Weon LEE, Byung Kook KIM, Ji Won SON, Wo Dum JUNG
  • Publication number: 20170297000
    Abstract: A multi-scaled oxygen storage material wherein cobalt element is complexed with a size of an atom or hundreds of nanometers or smaller in a ceria-zirconia solid solution and a method for preparing the same are provided. Specifically, The multi-scaled oxygen storage material contains a ceria-zirconia solid solution, a cobalt dopping contained in the solid solution in the form of an atom and a cobalt-based nanocluster dispersed in the solid solution as cobalt oxide and exhibits a microstructure distinguished from that of the existing ceria-zirconia (CZO)-based oxygen storage material as well as remarkably improved oxygen storage and release ability, and the method for preparing the same is provided.
    Type: Application
    Filed: October 19, 2016
    Publication date: October 19, 2017
    Inventors: Hyoung Chul KIM, Hae Weon LEE, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, Jong Sup HONG, Seung Hak SONG
  • Patent number: 9276272
    Abstract: Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: March 1, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung-Il Lee, Ji-Won Son, Jong Ho Lee, Hae June Je, Kyung Joong Yoon, Hae-Weon Lee, Byung Kook Kim
  • Patent number: 9209473
    Abstract: The present invention relates to a solid oxide fuel cell having a gradient structure in which pore size becomes gradually smaller from a porous electrode to an electrolyte thin film in order to form a dense electrolyte thin film of less than about 2 microns and preferably less than 1 micron on the porous electrode.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: December 8, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji-Won Son, Ho-Sung Noh, Hae-Weon Lee, Jong Ho Lee, Hae-Ryoung Kim, Jong Cheol Kim
  • Publication number: 20150118597
    Abstract: Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.
    Type: Application
    Filed: January 13, 2014
    Publication date: April 30, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung-Il LEE, Ji-Won SON, Jong Ho LEE, Hae June JE, Kyung Joong YOON, Hae-Weon LEE, Byung Kook KIM
  • Publication number: 20150064607
    Abstract: Disclosed is an electrode catalyst for a hydrocarbon-fueled solid oxide fuel cell. The electrode catalyst includes ceria supports and iridium-nickel alloy nanoparticles dispersed on the surfaces of the ceria supports. The electrode catalyst can be inhibited from carbon deposition, a general phenomenon in conventional hydrocarbon-fueled solid oxide fuel cells. Therefore, the catalytic activity of the electrode catalyst can be maintained even at high temperature for a long period of time. In addition, the electrode catalyst contains a minimum amount of a platinum group metal for inhibiting the occurrence of carbon deposition and has a maximized surface area. Therefore, the electrode catalyst exhibits improved catalytic activity and can be produced at greatly reduced cost while suppressing the occurrence of carbon deposition.
    Type: Application
    Filed: December 13, 2013
    Publication date: March 5, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kiyong AHN, Young-Hoon KIM, Soo-young CHO, Kyung Joong YOON, Byung Kook KIM, Hae-Weon LEE, Jong Ho LEE, Hyoungchul KIM
  • Patent number: 8802324
    Abstract: The present invention provides a hybrid composite sealant, as a sealing material for a planar type solid oxide fuel cell stack, having a matrix of a glass composition, wherein a surface layer reinforced with platelet reinforcement particles is laminated on either one or both surfaces of an inner layer reinforced with fibrous reinforcement particles. Accordingly, by applying the composite sealant of the present invention to the solid oxide fuel cell stack, excellent gas-tightness of the stack can be obtained even under low coupling pressure, thermal cycling durability can be enhanced due to low coupling strength with a contact surface of an object to be sealed, stack disassembly and maintenance can be facilitated when parts within the stack are disabled, and stack stability as well as stack performance can be maintained under a pressurized operation condition where pressure differentials between the inside and outside of the stack reach to 5 atmospheric pressures (0.5 MPa).
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 12, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong-Ho Lee, Hae-Weon Lee, Joo-Sun Kim, Hue-Sup Song, Ji-Won Son, Hae-Ryoung Kim, Sung-Moon Kim, Hyoung-Chul Kim, Hwa-Young Jung
  • Patent number: 8647771
    Abstract: The present invention provides electrode-electrolyte composite particles for a fuel cell, which have either electrode material particles uniformly dispersed around electrolyte material particles or electrolyte material particles uniformly dispersed around electrode material particles, to enhance the electrode performance characteristics and electrode/electrolyte bonding force, as well as thermal, mechanical and electrochemical properties of the fuel cell, in a simple method without using expensive starting materials and a high temperature process.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: February 11, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Ho Lee, Hae Weon Lee, Hue Sup Song, Joo Sun Kim, Ji Won Son, Hae Ryoung Kim, Hwa Young Jung
  • Patent number: 8383286
    Abstract: A metal oxide thin film structure for a solid oxide fuel cell, prepared by a method comprising dispersing a metal oxide nanopowder in a metal oxide salt solution and subsequent coating of the resulting metal oxide powder dispersed sol and the metal oxide salt solution on a porous substrate, has excellent gas impermeability, excellent phase stability, and is devoid of cracks or pinholes.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: February 26, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Hae-Weon Lee, Jong Ho Lee, Eun Oak Oh, Ji-Won Son, Hae-Ryoung Kim, Hyoungchul Kim, Kyung-ryul Lee
  • Publication number: 20120251917
    Abstract: Disclosed are a solid oxide fuel cell including: a) an anode support; b) a solid electrolyte layer formed on the anode support; and c) a nanostructure composite cathode layer formed on the solid electrolyte layer, wherein the nanostructure composite cathode layer includes an electrode material and an electrolyte material mixed in molecular scale, which do not react with each other or dissolve each other to form a single material, and a method for fabricating the same. The fuel cell is operable at low temperature and has high performance and superior stability.
    Type: Application
    Filed: January 27, 2012
    Publication date: October 4, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji-Won SON, Doo Hwan MYUNG, Jaeyeon HWANG, Hae-Weon LEE, Byung Kook KIM, Jong Ho LEE, Hae-Ryoung KIM, Ho Il JI
  • Publication number: 20120015279
    Abstract: Disclosed is a dense thin film, a fuel cell using the same and fabrication methods thereof. A method for fabricating a dense thin film comprises (1) forming a first thin film on a porous surface, and (2) forming, on a surface of the first thin film, a second thin film made of a homogeneous material with respect to the first thin film, thereby removing pinholes of the first thin film. The method for fabricating a dense thin film may comprise (1?) forming a first thin film on a porous surface, (2?) forming, on a surface of the first thin film, a second thin film made of a to heterogeneous material with respect to the first thin film, thereby removing pinholes of the first thin film, and (3?) etching a surface of the second thin film.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 19, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji-Won SON, Hae-Weon LEE, Chang Woo KWON, Ki-Bum KIM, Jong Ho LEE
  • Publication number: 20120003565
    Abstract: The present invention relates to a solid oxide fuel cell having a gradient structure in which pore size becomes gradually smaller from a porous electrode to an electrolyte thin film in order to form a dense electrolyte thin film of less than about 2 microns and preferably less than 1 micron on the porous electrode.
    Type: Application
    Filed: March 16, 2010
    Publication date: January 5, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji-Won Son, Ho-Sung Noh, Hae-Weon Lee, Jong Ho Lee, Hae-Ryoung Kim, Jong Cheol Kim