Patents by Inventor Haesun Park

Haesun Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933599
    Abstract: Disclosed is an electronic device. The electronic device comprises: a first image sensor and a second image sensor; and a processor which alternately performs a first image capture mode, in which a plurality of captured images are acquired by controlling the respective exposure times of the first image sensor and the second image sensor differently, and a second imager capture mode, in which a plurality of captured images are acquired by controlling the respective exposure times of the first image sensor and the second image sensor identically, identifies an object by using the plurality of captured images acquired in the first image capture mode, and acquires distance information about the identified object on the basis of the plurality of captured images acquired in the second image capture mode.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: March 19, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Taehee Lee, Hwayong Kang, Dongsoo Kim, Minjae Kim, Sahnggyu Park, Dongwon Yeo, Haesun Lee, Seungryong Jeon, Yongju Jeong, Donghoon Jang
  • Patent number: 10478398
    Abstract: Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: November 19, 2019
    Assignee: Akina, Inc.
    Inventors: Kinam Park, Ghanashyam S. Acharya, Haesun Park
  • Publication number: 20180221281
    Abstract: Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template.
    Type: Application
    Filed: January 16, 2018
    Publication date: August 9, 2018
    Applicant: AKINA, INC.
    Inventors: Kinam Park, Ghanashyam S. Acharya, Haesun Park
  • Patent number: 10011689
    Abstract: The present invention provides tissue expanders comprising biodegradable, chemically cross-linked hydrogels which are elastic in the dry state. These biocompatible tissue expanders are self-inflating and membrane-free. They swell slowly and elicit minimal negative tissue responses, while allowing for rapid and easy manipulation by the surgeon at the time of emplacement.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: July 3, 2018
    Assignees: Akina, Inc., THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Kinam Park, Clark Tobias Barco, Haesun Park, Yourong Fu, John Solomon Garner
  • Publication number: 20170037196
    Abstract: The present invention provides tissue expanders comprising biodegradable, chemically cross-linked hydrogels which are elastic in the dry state. These biocompatible tissue expanders are self-inflating and membrane-free. They swell slowly and elicit minimal negative tissue responses, while allowing for rapid and easy manipulation by the surgeon at the time of emplacement.
    Type: Application
    Filed: April 13, 2015
    Publication date: February 9, 2017
    Applicants: Akina, Inc. (an Indiana corporation), The United States Government as Represented by the Department of Veterans Affairs
    Inventors: Kinam Park, Clark Tobias Barco, Haesun Park, Yourong Fu, John Solomon Garner
  • Patent number: 9508167
    Abstract: A method and an apparatus are provided to visualize high-dimensional data. The method includes primarily visualizing the high-dimensional data at a dimension lower than the high-dimensional data to obtain a primarily-visualized image. The method also includes secondarily visualizing the high-dimensional data in an area of the primarily-visualized image at a dimension higher than the primarily-visualized image to obtain a secondarily-visualized image.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 29, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ha-Young Kim, Hyoung-Min Park, Haesun Park, Jae-Gul Choo
  • Publication number: 20150150807
    Abstract: Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 4, 2015
    Inventors: Kinam Park, Ghanashyam Acharya, Haesun Park
  • Patent number: 8951567
    Abstract: Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template.
    Type: Grant
    Filed: September 27, 2008
    Date of Patent: February 10, 2015
    Assignee: Akina, Inc.
    Inventors: Kinam Park, Ghanashyam Acharya, Haesun Park
  • Publication number: 20140225889
    Abstract: A method and an apparatus are provided to visualize high-dimensional data. The method includes primarily visualizing the high-dimensional data at a dimension lower than the high-dimensional data to obtain a primarily-visualized image. The method also includes secondarily visualizing the high-dimensional data in an area of the primarily-visualized image at a dimension higher than the primarily-visualized image to obtain a secondarily-visualized image.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 14, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ha-Young KIM, Hyoung-Min PARK, Haesun PARK, Jae-Gul CHOO
  • Publication number: 20090136583
    Abstract: Discrete microstructures of predefined size and shape are prepared using sol-gel phase-reversible hydrogel templates. An aqueous solution of hydrogel-forming material is covered onto a microfabricated silicon wafer master template having predefined microfeatures, such as pillars. A hydrogel template is formed, usually by lowering the temperature, and the formed hydrogel template is peeled away from the silicon master template. The wells of predefined size and shape on the hydrogel template are filled with a solution or a paste of a water-insoluble polymer, and the solvent is removed to form solid structures. The formed microstructures are released from the hydrogel template by simply melting the hydrogel template in water. The microstructures are collected by centrifugation. The microstructures fabricated by this method exhibit pre-defined size and shape that exactly correspond to the microwells of the hydrogel template.
    Type: Application
    Filed: September 27, 2008
    Publication date: May 28, 2009
    Inventors: Kinam Park, Ghanashyam Acharya, Haesun Park
  • Patent number: 6960617
    Abstract: Hydrogels having improved elasticity and mechanical strength properties are obtained by subjecting a hydrogel formulation containing a strengthening agent to chemical or physical crosslinking conditions subsequent to initial gel formation. Superporous hydrogels having improved elasticity and mechanical strength properties are similarly obtained whenever the hydrogel formulation is provided with a foaming agent. Interpenetrating networks of polymer chains comprised of primary polymer(s) and strengthening polymer(s) are thereby formed. The primary polymer affords capillary-based water sorption properties while the strengthening polymer imparts significantly enhanced mechanical strength and elasticity to the hydrogel or superporous hydrogel. Suitable strengthening agents can be natural or synthetic polymers, polyelectrolytes, or neutral, hydrophilic polymers.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 1, 2005
    Assignee: Purdue Research Foundation
    Inventors: Hossein Omidian, Yong Qiu, Shicheng Yang, Dukjoon Kim, Haesun Park, Kinam Park
  • Publication number: 20030232895
    Abstract: Hydrogels having improved elasticity and mechanical strength properties are obtained by subjecting a hydrogel formulation containing a strengthening agent to chemical or physical crosslinking conditions subsequent to initial gel formation. Superporous hydrogels having improved elasticity and mechanical strength properties are similarly obtained whenever the hydrogel formulation is provided with a foaming agent. Interpenetrating networks of polymer chains comprised of primary polymer(s) and strengthening polymer(s) are thereby formed. The primary polymer affords capillary-based water sorption properties while the strengthening polymer imparts significantly enhanced mechanical strength and elasticity to the hydrogel or superporous hydrogel. Suitable strengthening agents can be natural or synthetic polymers, polyelectrolytes, or neutral, hydrophilic polymers.
    Type: Application
    Filed: April 22, 2003
    Publication date: December 18, 2003
    Inventors: Hossein Omidian, Yong Qiu, Shicheng Yang, Dukjoon Kim, Haesun Park, Kinam Park
  • Publication number: 20010038831
    Abstract: A superporous hydrogel composite is formed by polymerizing one or more ethylenically-unsaturated monomers, and a multiolefinic crosslinking agent, in the presence of particles of a disintegrant and a blowing agent. The disintegrant, which rapidly absorbs water, serves to greatly increase the mechanical strength of the superporous hydrogel and significantly shorten the time required to absorb water and swell. Superporous hydrogel composites prepared by this method have an average pore size in the range of 10 &mgr;m to 3,000 &mgr;m. Preferred particles of disintegrant include natural and synthetic charged polymers, such as crosslinked sodium carboxymethylcellulose, crosslinked sodium starch glycolate, and crosslinked polyvinylpyrrolidone. The blowing agent is preferably a compound that releases gas bubbles upon acidification, such as NaHCO3. Improved hydrogel composites formed without a blowing agent are also provided.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 8, 2001
    Inventors: Kiham Park, Haesun Park
  • Patent number: 6271278
    Abstract: A superporous hydrogel composite is formed by polymerizing one or more ethylenically-unsaturated monomers, and a multiolefinic crosslinking agent, in the presence of particles of a disintegrant and a blowing agent. The disintegrant, which rapidly absorbs water, serves to greatly increase the mechanical strength of the superporous hydrogel and significantly shorten the time required to absorb water and swell. Superporous hydrogel composites prepared by this method have an average pore size in the range of 10 &mgr;m to 3,000 &mgr;m. Preferred particles of disintegrant include natural and synthetic charged polymers, such as crosslinked sodium carboxymethylcellulose, crosslinked sodium starch glycolate, and crosslinked polyvinylpyrrolidone. The blowing agent is preferably a compound that releases gas bubbles upon acidification, such as NaHCO3. Improved hydrogel composites formed without a blowing agent are also provided.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: August 7, 2001
    Assignee: Purdue Research Foundation
    Inventors: Kinam Park, Jun Chen, Haesun Park
  • Patent number: 5750585
    Abstract: A water swellable foam matrix formed as a macroporous solid comprising a foam stabilizing agent and a polymer or copolymer of a free radical polymerizable hydrophilic olefin monomer crosslinked with about 0.1 to about 10% by weight of a multiolefin-functional crosslinking agent is described. The foam matrix is characterized by rapid swelling and high water swelling ratios.
    Type: Grant
    Filed: April 4, 1995
    Date of Patent: May 12, 1998
    Assignee: Purdue Research Foundation
    Inventors: Kinam Park, Haesun Park