Patents by Inventor Haicen Zhang

Haicen Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8983765
    Abstract: A system for lane centering control for a vehicle having a user-operable steering device is disclosed. The system includes a set of sensors for sensing the vehicle speed, yaw rate, and steering device angle, a target path tracker configured for tracking the target path of the vehicle, a processor responsive to the set of sensors for predicting the path of the vehicle, a controller responsive to the set of sensors, the target path tracker, and the processor, and productive of a lane centering control signal, and an active front steering actuator responsive to the control signal and productive of steering assistance to the steering device. The controller includes a processing circuit responsive to executable instructions for producing the steering assistance to the steering device to reduce a difference between the predicted path and the target path, thereby serving to maintain lane centering of the vehicle.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Weiwen Deng, Yong H. Lee, Haicen Zhang
  • Patent number: 7912665
    Abstract: A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: March 22, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Weiwen Deng, Yong H. Lee, Haicen Zhang
  • Patent number: 7774103
    Abstract: A system for estimating vehicle side-slip in the linear vehicle operating region that includes updating front and rear cornering stiffness signals. The system includes a first state observer processor that employs a bicycle model with state feedback for generating yaw acceleration and lateral acceleration signals. The system further includes a subtractor that receives the yaw acceleration and lateral acceleration signals and measured yaw rate and lateral acceleration signals, and generates yaw acceleration and lateral acceleration error signals. A parameter estimation processor calculates an updated front cornering stiffness and rear cornering stiffness signals. The updated front and rear cornering stiffness signals are sent back to the first state observer processor, and are used by second state observer processor for generating the estimated vehicle side-slip.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: August 10, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Weiwen Deng, Haicen Zhang
  • Patent number: 7774121
    Abstract: A system and method for detecting a road curve as a vehicle approaches the curve, automatically providing road curvature information and controlling vehicle speed. The system uses a locating device and a map database to know the vehicle's position. Depending on the speed of the vehicle, the system generates a curvature profile for different curvature data points at or around the curve in front of the vehicle. The system then generates a desired speed profile for the curvature points. The desired speed profile and the actual vehicle speed are compared to determine whether the vehicle is traveling too fast for the target speed at each profile point. The acceleration computation can be enhanced by providing a driver cornering mode input that the vehicle operator can select based on how aggressively the driver wants the system to act to slow down the vehicle.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 10, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Yong H. Lee, Weiwen Deng, Haicen Zhang
  • Publication number: 20100131233
    Abstract: A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wiewen Deng, Yong H. Lee, Haicen Zhang
  • Publication number: 20100100360
    Abstract: A method is provided for determining a state of a road condition using a linear model-based estimation technique. Two vehicle reference models are defined to represent vehicles operating under non-slippery and slippery road surfaces respectively. An index that reflects the vehicle understeer characteristics is also defined. Indices are determined from the reference models under the non-slippery road surface, the slippery road surface, and from vehicle sensor measurement, respectively. A first root mean square deviation is calculated between the index of reference model under non-slippery road surface and the index calculated based on sensor measurement. A second root mean square deviation is calculated between the index of reference model under slippery road surface and the index calculated based on sensor measurement.
    Type: Application
    Filed: October 16, 2008
    Publication date: April 22, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Weiwen Deng, Haicen Zhang, Qingrong Zhao
  • Publication number: 20090037062
    Abstract: A system and method for detecting a road curve as a vehicle approaches the curve, automatically providing road curvature information and controlling vehicle speed. The system uses a locating device and a map database to know the vehicle's position. Depending on the speed of the vehicle, the system generates a curvature profile for different curvature data points at or around the curve in front of the vehicle. The system then generates a desired speed profile for the curvature points. The desired speed profile and the actual vehicle speed are compared to determine whether the vehicle is traveling too fast for the target speed at each profile point. The acceleration computation can be enhanced by providing a driver cornering mode input that the vehicle operator can select based on how aggressively the driver wants the system to act to slow down the vehicle.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Yong H. Lee, Weiwen Deng, Haicen Zhang
  • Publication number: 20080091318
    Abstract: A system for lane centering control for a vehicle having a user-operable steering device is disclosed. The system includes a set of sensors for sensing the vehicle speed, yaw rate, and steering device angle, a target path tracker configured for tracking the target path of the vehicle, a processor responsive to the set of sensors for predicting the path of the vehicle, a controller responsive to the set of sensors, the target path tracker, and the processor, and productive of a lane centering control signal, and an active front steering actuator responsive to the control signal and productive of steering assistance to the steering device. The controller includes a processing circuit responsive to executable instructions for producing the steering assistance to the steering device to reduce a difference between the predicted path and the target path, thereby serving to maintain lane centering of the vehicle.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 17, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Weiwen Deng, Yong H. Lee, Haicen Zhang
  • Publication number: 20070027586
    Abstract: A system for estimating vehicle side-slip in the linear vehicle operating region that includes updating front and rear cornering stiffness signals. The system includes a first state observer processor that employs a bicycle model with state feedback for generating yaw acceleration and lateral acceleration signals. The system further includes a subtractor that receives the yaw acceleration and lateral acceleration signals and measured yaw rate and lateral acceleration signals, and generates yaw acceleration and lateral acceleration error signals. A parameter estimation processor calculates an updated front cornering stiffness and rear cornering stiffness signals. The updated front and rear cornering stiffness signals are sent back to the first state observer processor, and are used by second state observer processor for generating the estimated vehicle side-slip.
    Type: Application
    Filed: July 28, 2005
    Publication date: February 1, 2007
    Inventors: Weiwen Deng, Haicen Zhang