Patents by Inventor Hailin Yang

Hailin Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250135036
    Abstract: Among other things, the present disclosure provides oligonucleotides, compositions and methods thereof that can bring about specific editing of a target adenosine in a target RNA molecule. Such oligonucleotides, compositions and methods are useful to treat, prevent, or ameliorate MECP2 associated disorders, diseases and syndromes that can benefit from adenosine modification.
    Type: Application
    Filed: September 26, 2022
    Publication date: May 1, 2025
    Inventors: Christopher Michael Acker, Onanong Chivatakarn, Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Ian Chandler Harding, Jesse Turner
  • Publication number: 20240150756
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: April 21, 2023
    Publication date: May 9, 2024
    Inventors: Maria David Frank-Kamenetsky, Hailin Yang, Aaron Jay Morris, Chandra Vargeese, Christopher J. Francis
  • Publication number: 20240117347
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 11, 2024
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena, Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Publication number: 20240026358
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: March 11, 2022
    Publication date: January 25, 2024
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Publication number: 20230408385
    Abstract: A testing device for simulating coalbump includes a testing chamber. A first oil cylinder, a second oil cylinder and a third oil cylinder are provided within the testing chamber; each piston rod of each oil cylinder can stretch or retract. A first reaction seat, a second reaction seat and a third reaction seat are arranged opposite to a side of the first piston rod of the first oil cylinder, a side of the second piston rod of the second oil cylinder and a side of the third piston rod of the third oil cylinder respectively. The testing device includes a shear loading unit including a fourth oil cylinder and a fifth oil cylinder located on a same axis, and a side of a fourth piston rod of the fourth oil cylinder and a side of a fifth piston rod of the fifth oil cylinder are arranged opposite to each other.
    Type: Application
    Filed: December 19, 2022
    Publication date: December 21, 2023
    Inventors: Shoujian Peng, Jiang Xu, Qingfeng Xu, Liang Cheng, Li Jia, Bin Zhou, Yi'an Chen, Feng Jiao, Yan Yang, Hailin Yang, Qingqing Gan, Xiaomei Wang
  • Publication number: 20230392137
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: September 26, 2022
    Publication date: December 7, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto, Jayakanthan Kumarasamy, Anthony Lamattina, Tom Liantang Pu
  • Publication number: 20230329201
    Abstract: Among other things, the present disclosure provides cells and non-human animals engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, the present disclosure provides cells and non-human animals engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, non-human animals are genetically modified rodents such as mice, rat, etc. In some embodiments, non-human animals are mice. In some embodiments, the present disclosure provides technologies for assessing an agent comprising administering the agent to a cell or non-human animal engineered to express an ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, such a cell or non-human animal is engineered to express a human ADAR1 polypeptide or a characteristic portion thereof. In some embodiments, an agent is a pharmaceutical agent. In some embodiments, an agent is or comprises an oligonucleotide.
    Type: Application
    Filed: August 23, 2021
    Publication date: October 19, 2023
    Inventors: Hailin Yang, Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Jack David Godfrey, Naoki Iwanmoto
  • Publication number: 20230295617
    Abstract: In some embodiments, the present disclosure pertains to compositions and methods related to delivery of a biologically active agent, wherein the compositions comprise a biologically active agent and a lipid. In various embodiments, the lipid is selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. In some embodiments, a composition and method are useful for delivery of a biologically active agent to a particular cell or tissue, e.g., a muscle cell or tissue.
    Type: Application
    Filed: November 30, 2022
    Publication date: September 21, 2023
    Inventors: Chandra Vargeese, Jason Jingxin Zhang, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Naoki Iwamoto, Hailin Yang, Maria David Frank-Kamenetsky, Subramanian Marappan
  • Publication number: 20230220384
    Abstract: Among other things, the present disclosure provides oligonucleotides and compositions thereof. In some embodiments, provided oligonucleotides and compositions are useful for adenosine modification. In some embodiments, the present disclosure provides methods for treating various conditions, disorders or diseases that can benefit from adenosine modification.
    Type: Application
    Filed: October 6, 2020
    Publication date: July 13, 2023
    Inventors: Prashant Monian, Chikdu Shakti Shivalila, Subramanian Marappan, Chandra Vargeese, Pachamuthu Kandasamy, Genliang Lu, Hui Yu, David Charles Donnell Butler, Luciano Henrique Apponi, Mamoru Shimizu, Stephany Michelle Standley, David John Boulay, Andrew Guzior Hoss, Jigar Desai, Jack David Godfrey, Hailin Yang, Naoki Iwamoto
  • Patent number: 11634710
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: April 25, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: Maria David Frank-Kamenetsky, Hailin Yang, Aaron Jay Morris, Chandra Vargeese, Christopher J. Francis
  • Publication number: 20220306573
    Abstract: Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods of use thereof. In some embodiments, the present disclosure provides technologies useful for reducing levels of transcripts. In some embodiments, the present disclosure provides technologies useful for modulating transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.
    Type: Application
    Filed: April 11, 2019
    Publication date: September 29, 2022
    Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian
  • Publication number: 20220186217
    Abstract: Among other things, the present disclosure provides designed DMD oligonucleotides, compositions, and methods of use thereof. In some embodiments, the present disclosure provides technologies useful for repairing mutant DMD transcripts by skipping exon 51, so that the transcript can be translated into an internally truncated but at least partially functional Dystrophin protein variant. In some embodiments, the present disclosure provides technologies useful for modulating DMD transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) DMD transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as muscular dystrophy, including but not limited to Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 16, 2022
    Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian, Khoa Ngoc Dang Luu
  • Publication number: 20210254062
    Abstract: Among other things, the present disclosure provides designed DMD oligonucleotides, compositions, and methods of use GC thereof. In some embodiments, the present disclosure provides technologies useful for repairing mutant DMD transcripts by skipping exon 51 or exon 53, so that the transcript can be translated into an internally truncated but at least partially functional Dystrophin protein variant. In some embodiments, the present disclosure provides technologies useful for modulating DMD transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) DMD transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as muscular dystrophy, including but not limited to Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 19, 2021
    Applicant: WAVE LIFE SCIENCES LTD.
    Inventors: Jason Jingxin Zhang, Chandra Vargeese, Naoki Iwamoto, Chikdu Shakti Shivalila, Nayantara Kothari, Ann Fiegen Durbin, Selvi Ramasamy, Pachamuthu Kandasamy, Jayakanthan Kumarasamy, Gopal Reddy Bommineni, Subramanian Marappan, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Hailin Yang, Mamoru Shimizu, Prashant Monian
  • Publication number: 20200299692
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: February 4, 2020
    Publication date: September 24, 2020
    Inventors: Maria David Frank-Kamenetsky, Hailin Yang, Aaron Jay Morris, Chandra Vargeese, Christopher J. Francis
  • Publication number: 20190390197
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: October 6, 2017
    Publication date: December 26, 2019
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena ., Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Patent number: 10450568
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Grant
    Filed: September 23, 2018
    Date of Patent: October 22, 2019
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena, Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Publication number: 20190264267
    Abstract: Among other things, the present disclosure pertains to methods and compositions related to phasing of allelic variants of genetic loci. Phasing of allelic variants of genetic loci on an individual patient's chromosomes is highly valuable for many purposes, including patient stratification for allele-specific therapeutics.
    Type: Application
    Filed: July 24, 2017
    Publication date: August 29, 2019
    Applicant: Wave Life Sciences Ltd.
    Inventors: Hailin YANG, Aaron Jay MORRIS, Vinod VATHIPADIEKAL
  • Publication number: 20190249173
    Abstract: In some embodiments, the present disclosure pertains to compositions and methods related to delivery of a biologically active agent, wherein the compositions comprise a biologically active agent and a lipid. In various embodiments, the lipid is selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosa-hexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. In some embodiments, a composition and method are useful for delivery of a biologically active agent to a particular cell or tissue, e.g., a muscle cell or tissue.
    Type: Application
    Filed: May 3, 2017
    Publication date: August 15, 2019
    Inventors: Chandra Vargeese, Jason Jingxin Zhang, Sethumadhavan Divakaramenon, David Charles Donnell Butler, Genliang Lu, Naoki Iwamoto, Hailin Yang, Maria David Frank-Kamenetsky, Subramanian Marappan
  • Publication number: 20190127733
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: October 7, 2016
    Publication date: May 2, 2019
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena ., Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Publication number: 20190008986
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: September 23, 2018
    Publication date: January 10, 2019
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena ., Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang