Patents by Inventor Haixia Deng

Haixia Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290925
    Abstract: Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 14, 2023
    Inventors: Haixia Deng, Yongbong Han, Charan Masarapu, Yogesh Kumar Agunchamy, Herman A. Lopez, Sujeet Kumar
  • Publication number: 20230187632
    Abstract: Various lithium cobalt oxides materials doped with one or more metal dopants having a chemical formula of LixCoyOz (doped Me1a Me2b Me3c . . . MeNn), and method and apparatus of producing the various lithium cobalt oxides materials are provided. The method includes adjusting a molar ratio MLiSalt:MCoSalt:MMe1Salt:MMe2Salt:MMe3Salt:. . . MMeNSalt of a lithium-containing salt, a cobalt-containing salt and one or more metal-dopant-containing salts within a liquid mixture to be equivalent to a ratio of x:y:a:b:c: . . . n , drying a mist of the liquid mixture in the presence of a gas to form a gas-solid mixture, separating the gas-solid mixture into one or more solid particles of an oxide material, and annealing the solid particles of the oxide material in the presence of another gas flow to obtain crystalized particles of the lithium cobalt oxide material. The process system has a mist generator, a drying chamber, one or more gas-solid separator, and one or more reactors.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Haixia DENG, Shengfeng LIU, Min-Duan LIU, Mengchen LIU, Liang-Yuh CHEN
  • Publication number: 20230183092
    Abstract: Various lithium cobalt oxides materials having a chemical formula of LixCoyOz, and method and apparatus of producing the various lithium cobalt oxides materials are provided. The method includes adjusting a molar ratio MLiSalt:MCoSalt of a lithium-containing salt, and a cobalt-containing salt within a liquid mixture to be equivalent to a ratio of x:y, drying a mist of the liquid mixture in the presence of a gas to form a gas-solid mixture, separating the gas-solid mixture into one or more solid particles of an oxide material, and annealing the solid particles of the oxide material in the presence of another gas flow to obtain crystallized particles of the lithium cobalt oxide material. The process system has a mist generator, a drying chamber, one or more gas-solid separator, and one or more reactors.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Haixia DENG, Shengfeng LIU, Min-Duan LIU, Mengchen LIU, Liang-Yuh CHEN
  • Patent number: 11646407
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two-step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: May 9, 2023
    Assignee: Zenlabs Energy, Inc.
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Patent number: 11502299
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: November 15, 2022
    Assignee: Zenlabs Energy, Inc.
    Inventors: Charan Masarapu, Haixia Deng, Yongbong Han, Yogesh Kumar Anguchamy, Subramanian Venkatachalam, Sujeet A. Kumar, Herman A. Lopez
  • Publication number: 20220246902
    Abstract: Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Haixia Deng, Yongbong Han, Charan Masarapu, Yogesh Kumar Anguchamy, Herman A. Lopez, Sujeet Kumar
  • Patent number: 11387440
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: July 12, 2022
    Assignee: Zenlabs Energy, Inc.
    Inventors: Charan Masarapu, Yogesh Kumar Anguchamy, Yongbong Han, Haixia Deng, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20220209219
    Abstract: High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Herman A. Lopez, Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Subramanian Venkatachalam, Sujeet Kumar
  • Publication number: 20220181616
    Abstract: Various lithium cobalt oxides materials doped with one or more metal dopants having a chemical formula of Lix Coy Oz (doped Me1a Me2b Me3c . . . MeNn), and method and apparatus of producing the various lithium cobalt oxides materials are provided. The method includes adjusting a molar ratio MLiSalt:MCoSalt:MMe1Salt:MMe2Salt:MMe3Salt: . . . MMeNSalt of a lithium-containing salt, a cobalt-containing salt and one or more metal-dopant-containing salts within a liquid mixture to be equivalent to a ratio of x:y:a:b:c: . . . n, drying a mist of the liquid mixture in the presence of a gas to form a gas-solid mixture, separating the gas-solid mixture into one or more solid particles of an oxide material, and annealing the solid particles of the oxide material in the presence of another gas flow to obtain crystalized particles of the lithium cobalt oxide material. The process system has a mist generator, a drying chamber, one or more gas-solid separator, and one or more reactors.
    Type: Application
    Filed: September 17, 2021
    Publication date: June 9, 2022
    Inventors: Haixia DENG, Shengfeng LIU, Min-Duan LIU, Mengchen LIU, Liang-Yuh CHEN
  • Publication number: 20220177324
    Abstract: Various lithium cobalt oxides materials having a chemical formula of Lix Coy Oz, and method and apparatus of producing the various lithium cobalt oxides materials are provided. The method includes adjusting a molar ratio MLiSalt:MCoSalt of a lithium-containing salt, and a cobalt-containing salt within a liquid mixture to be equivalent to a ratio of x:y, drying a mist of the liquid mixture in the presence of a gas to form a gas-solid mixture, separating the gas-solid mixture into one or more solid particles of an oxide material, and annealing the solid particles of the oxide material in the presence of another gas flow to obtain crystalized particles of the lithium cobalt oxide material. The process system has a mist generator, a drying chamber, one or more gas-solid separator, and one or more reactors.
    Type: Application
    Filed: September 17, 2021
    Publication date: June 9, 2022
    Inventors: Haixia DENG, Shengfeng LIU, Min-Duan LIU, Mengchen LIU, Liang-Yuh CHEN
  • Patent number: 11309534
    Abstract: High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: April 19, 2022
    Assignee: Zenlabs Energy, Inc.
    Inventors: Herman A. Lopez, Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Subramanian Venkatachalam, Sujeet Kumar
  • Publication number: 20210135197
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two-step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 6, 2021
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Patent number: 10886526
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: January 5, 2021
    Assignee: Zenlabs Energy, Inc.
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20200313160
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Application
    Filed: May 18, 2020
    Publication date: October 1, 2020
    Inventors: Charan Masarapu, Yogesh Kumar Anguchamy, Yongbong Han, Haixia Deng, Sujeet Kumar, Herman A. Lopez
  • Patent number: 10686183
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: June 16, 2020
    Assignee: Zenlabs Energy, Inc.
    Inventors: Charan Masarapu, Yogesh Kumar Anguchamy, Yongbong Han, Haixia Deng, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20200161654
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 21, 2020
    Inventors: Charan Masarapu, Haixia Deng, Yongbong Han, Yogesh Kumar Anguchamy, Subramanian Venkatachalam, Sujeet A. Kumar, Herman A. Lopez
  • Patent number: 10553871
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: February 4, 2020
    Assignee: Zenlabs Energy, Inc.
    Inventors: Charan Masarapu, Haixia Deng, Yongbong Han, Yogesh Kumar Anguchamy, Subramanian Venkatachalam, Sujeet Kumar, Herman A. Lopez
  • Patent number: 10290871
    Abstract: Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 14, 2019
    Assignee: Zenlabs Energy, Inc.
    Inventors: Charan Masarapu, Haixia Deng, Yongbong Han, Yogesh Kumar Anguchamy, Subramanian Venkatachalam, Sujeet Kumar, Herman A. Lopez
  • Patent number: 10170762
    Abstract: Electrochemically active material comprising a lithium metal oxide composition approximately represented by the formula Li1+bComNinMnpO(2), where ?0.2?b?0.2, 0.2?m?0.45, 0.055?n?0.24, 0.385?p?0.72, and m+n+p is approximately 1 has been synthesized and assembled to batteries. The electrochemical performance of the batteries was evaluated. The lithium metal oxide composition in general comprises a first layered phase, a second layered phase and a spinel phase. A layered Li2MnO3 phase is at least partially activated upon charging to 4.5V. In some embodiments, the material further comprises a stabilization coating covering the lithium metal oxide composition.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: January 1, 2019
    Assignee: Zenlabs Energy, Inc.
    Inventors: Haixia Deng, Subramanian Venkatachalam, Sujeet Kumar, Herman A. Lopez
  • Patent number: 10020491
    Abstract: Silicon based anode active materials are described for use in lithium ion batteries. The silicon based materials are generally composites of nanoscale elemental silicon with stabilizing components that can comprise, for example, silicon oxide-carbon matrix material, inert metal coatings or combinations thereof. High surface area morphology can further contribute to the material stability when cycled in a lithium based battery. In general, the material synthesis involves a significant solution based processing step that can be designed to yield desired material properties as well as providing convenient and scalable processing.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: July 10, 2018
    Assignee: Zenlabs Energy, Inc.
    Inventors: Yongbong Han, Charan Masarapu, Haixia Deng, Yogesh Kumar Anguchamy, Subramanian Venkatachalam, Herman A. Lopez