Patents by Inventor Hajime Satou

Hajime Satou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256473
    Abstract: To provide a means for improving durability of a positive electrode for a lithium battery (in particular, a resin current collector for forming the positive electrode). The means is achieved by a positive electrode for a lithium battery having a resin current collector containing a polyolefin-based resin matrix and a conductive filler, and a positive electrode active material layer provided on the resin current collector, characterized in that an electron conductive layer is disposed on the surface of the resin current collector that is in contact with the positive electrode active material layer.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: April 9, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10236478
    Abstract: Provided is a method for producing a lithium ion cell having an outer container composed of a resin molded article, and the method for producing a lithium ion cell includes a current collector forming process of forming, on the inner side of an outer container, each of a first electrode current collector and a second electrode current collector composed of an electrically conductive polymer composition by using a molding die.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 19, 2019
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro Shindo, Yusuke Mizuno, Kenichi Kawakita, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20190067680
    Abstract: To provide an electrode for a lithium ion secondary battery capable of enhancing a charge and discharge cycle durability of an electrode that uses a resin current collector. An electrode for a lithium ion secondary battery provided with a resin current collector including a polyolefin resin matrix and a conductive filler A, and an electrode active material layer provided on the resin current collector, in which a crosslinked resin thin-film layer, which contains an Ni filler as a conductive filler B that does not alloy with Li and which has impermeability to the electrolyte solution, is arranged between the resin current collector and a negative electrode active material layer.
    Type: Application
    Filed: February 14, 2017
    Publication date: February 28, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Naofumi SHOJI, Masatoshi OKURA
  • Patent number: 10211462
    Abstract: Provided is a lithium ion cell having a power generation part provided with a single cell obtained by stacking a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector in the order, and an exterior cell container for accommodating the power generation part, in which the positive electrode active material layer is a non-bound material of a positive electrode active material particle, the negative electrode active material layer is a non-bound material of a negative electrode active material particle, and the single cell has flexibility.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: February 19, 2019
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro Shindo, Yusuke Mizuno, Kenichi Kawakita, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20180316018
    Abstract: The present invention provides an electrode capable of reducing contact resistance between a resin current collector and the electrode, and a method of manufacturing the electrode. The electrode of the present invention includes a positive electrode current collector 11 containing a polymer material and a conductive filler, a positive electrode active material layer 13 disposed adjacent to the positive electrode current collector, and a concavoconvex shape 11c corresponding to a concavoconvex shape 13c formed on a surface of the positive electrode active material layer that is in contact with the positive electrode current collector, the concavoconvex shape being formed on a surface of the positive electrode current collector that is in contact with the positive electrode active material layer.
    Type: Application
    Filed: September 21, 2016
    Publication date: November 1, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Hajime SATOU, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Masatoshi OKURA
  • Publication number: 20180301691
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 18, 2018
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20180090762
    Abstract: The objective of the present invention is to provide an electrode for a lithium ion battery which has excellent electron conductivity even when the thickness of the electrode is increased. The electrode for a lithium ion battery according to the present invention includes a first principal surface located on a separator side of the lithium ion battery, and a second principal surface located on a current collector side, wherein the electrode has a thickness of 50 to 5000 ?m, and the electrode includes, between the first principal surface and the second principal surface, short fibers (A) having an average fiber length of 50 nm or more and less than 100 ?m, long fibers (B) having an average fiber length of 100 ?m or more and 1000 ?m or less, and active material particles (C), and the short fibers (A) and the long fibers (B) are electroconductive fibers.
    Type: Application
    Filed: March 3, 2016
    Publication date: March 29, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yusuke NAKASHIMA, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20180090766
    Abstract: To provide a means for improving durability of a positive electrode for a lithium battery (in particular, a resin current collector for forming the positive electrode). The means is achieved by a positive electrode for a lithium battery having a resin current collector containing a polyolefin-based resin matrix and a conductive filler, and a positive electrode active material layer provided on the resin current collector, characterized in that an electron conductive layer is disposed on the surface of the resin current collector that is in contact with the positive electrode active material layer.
    Type: Application
    Filed: March 25, 2016
    Publication date: March 29, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Hiroshi FUKUMOTO, Masatoshi OKURA, Yasuhiro SHINDO, Yasuhiro TSUDO
  • Publication number: 20170279119
    Abstract: In a non-aqueous organic electrolyte secondary cell, the counter charge capacity ratio (A/C) between the cathodes and the anodes represented by the following formula is set to within the range from 1.10 to 1.35, A/C=?×(anode charge capacity×?)/(cathode charge capacity×?×?) where ? is the electrode area coefficient defined as (anode area)/(cathode area) and ?>1.0, ? is a design coefficient and 0.85???1.15, ? is the charge-discharge efficiency ratio defined as (charge-discharge ratio at 25° C.)/(charge-discharge ratio at 55° C.), and ? is the temperature characteristic coefficient defined as (charge capacity at 55° C.)/(charge capacity at 25° C.).
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shinji Yamamoto, Hideaki Tanaka, Hajime Satou
  • Publication number: 20170279113
    Abstract: The present invention relates to a laminate type battery including: a power generating element formed by electrically laminating in series a plurality of single battery layers in which the single battery layer is formed by sequentially laminating a positive electrode current collector, a positive electrode active material layer, an electrolyte layer, a negative electrode active material layer, and a negative electrode current collector; and an outer casing body inside which the power generating element is disposed, in which at least one of the positive electrode current collector and the negative electrode current collector includes a resin layer having conductivity, and the power generating element further includes a resistance reduction layer adjacent to the resin layer at the outer surface side of the single battery layer including the resin layer.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 28, 2017
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Hiroshi FUKUMOTO, Masatoshi OKURA, Yasuhiro SHINDO, Yasuhiro TSUDO
  • Publication number: 20170279125
    Abstract: The present invention provides a means for improving the durability of a battery. An electrode of the present invention comprises a current collector having a conductive resin layer comprising a polymer material and a conductive filler, and an active material layer, and the electrode further includes a conductive member, which is in electrical contact with the conductive filler, between the current collector and the active material layer.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 28, 2017
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Hiroshi FUKUMOTO, Masatoshi OKURA, Yasuhiro SHINDO, Yasuhiro TSUDO
  • Publication number: 20170237046
    Abstract: Provided is a method for producing a lithium ion cell having an outer container composed of a resin molded article, and the method for producing a lithium ion cell includes a current collector forming process of forming, on the inner side of an outer container, each of a first electrode current collector and a second electrode current collector composed of an electrically conductive polymer composition by using a molding die.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 17, 2017
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro SHINDO, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20170237116
    Abstract: Provided is a lithium ion cell having a power generation part provided with a single cell obtained by stacking a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector in the order, and an exterior cell container for accommodating the power generation part, in which the positive electrode active material layer is a non-bound material of a positive electrode active material particle, the negative electrode active material layer is a non-bound material of a negative electrode active material particle, and the single cell has flexibility.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 17, 2017
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro SHINDO, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 9711791
    Abstract: In a non-aqueous organic electrolyte secondary cell, the counter charge capacity ratio (A/C) between the cathodes and the anodes represented by the following formula is set to within the range from 1.10 to 1.35, A/C=?×(anode charge capacity×?)/(cathode charge capacity×?×?) where ? is the electrode area coefficient defined as (anode area)/(cathode area) and ?>1.0, ? is a design coefficient and 0.85???1.15, ? is the charge-discharge efficiency ratio defined as (charge-discharge ratio at 25° C.)/(charge-discharge ratio at 55° C.), and ? is the temperature characteristic coefficient defined as (charge capacity at 55° C.)/(charge capacity at 25° C.).
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: July 18, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Shinji Yamamoto, Hideaki Tanaka, Hajime Satou
  • Publication number: 20170033350
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: December 12, 2014
    Publication date: February 2, 2017
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 8734984
    Abstract: When a bipolar battery is manufactured, a bipolar electrode and a separator are prepared first. Then, one electrode (for example, a positive electrode) out of positive and negative electrodes is applied with such an amount of electrolyte as being exposed on a surface of the one electrode. Then, the separator is arranged on the surface of the one electrode applied with the electrolyte, thus forming a sub-assembly unit. Then, a plurality of the sub-assembly units are layered, and the electrolyte applied to the one electrode is made to permeate through the separator to the other electrode, thus forming an assembly unit.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 27, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Gen Takayama, Kenji Hosaka, Teruo Segawa, Hajime Satou, Hideaki Horie, Takahiro Iwasaki, Yoshio Shimoida
  • Patent number: 8410372
    Abstract: A wiring board to be inserted between collector foils of each unit cell in a stacked battery includes a comb-shaped insulating substrate and a wiring layer. The insulating substrate has a plurality of teeth and a rod, and the wiring layer is formed on the insulating substrate and includes a plurality of lead wires individually extending from a distal end of each of the plurality of teeth to an end of the rod to deliver a current of a potential across a conductive member being in contact with the distal ends of the teeth to the end of the rod.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: April 2, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takuya Kinoshita, Kenji Hosaka, Hajime Satou, Osamu Shimamura
  • Patent number: 8397325
    Abstract: This air cell cushion has a pair of side air cells extending upwardly from the upper surface side of the base member at both end sides in the lateral direction of the base member. The side air cells have a larger front-rear direction size than in the lateral direction thereof. Also, each side air cell is configured to inflate outward in the lateral direction. By this, in a case in which the side air cells face the armrests of the wheel chair, when the side air cells are inflated outward in the lateral direction, the outer side surfaces of the side air cells abut against or become adjacent to the armrests.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: March 19, 2013
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Hajime Satou, Toshimitsu Ebinuma, Yasunobu Seki
  • Publication number: 20120225177
    Abstract: The present invention provides carbonated beverages that have new qualities of being less likely to release carbon dioxide dissolved therein, bringing the feeling of fine bubbles in drinking, and allowing a full control of their sparkling characteristic, and a method for producing the carbonated beverages. A liquid containing carbon dioxide gas is passed through an apparatus to generate cavitation under pressure conditions to generate cavitation in the liquid, thereby making finer the bubbles of the dissolved carbon dioxide gas.
    Type: Application
    Filed: November 10, 2010
    Publication date: September 6, 2012
    Applicant: SUNTORY HOLDINGS LIMITED
    Inventors: Yuki Matsuoka, Hajime Satou, Takuya Hashimoto, Noriyuki Ando, Hitoshi Matsubara, Toshihiko Eguchi
  • Patent number: 8148010
    Abstract: A bipolar battery and a battery assembly unit that reduces a current density change in a battery element is disclosed. The bipolar battery comprises a battery element configured by alternately stacking a bipolar electrode and an electrolyte layer, as well as cathode and anode terminal plates electrically connected to the battery element so as to extract the current from the battery element. In the bipolar battery, the total electrical resistance of the cathode and anode terminal plates along the surface direction is smaller than the total electrical resistance of the battery element along the stacking direction between the cathode and anode terminal plates.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 3, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenji Hosaka, Hideaki Horie, Hajime Satou, Yoshio Shimoida, Teruo Segawa, Gen Takayama, Ohtani Yoshihiko