Patents by Inventor Hajime Sawada
Hajime Sawada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12064814Abstract: Provided is a method of producing a composite having high strength and high thermal conductivity. The method includes: an alloy preparation step including preparing an alloy which is a solid solution containing ?-Fe as a solvent and at least one type of ?-phase stabilizing element as a solute; a first mixing step including mixing at least one type of ?-phase stabilizing element in powder form and SiC to prepare a first mixture; a second mixing step including mixing the alloy and the first mixture to prepare a second mixture; and a sintering step including sintering the second mixture.Type: GrantFiled: July 9, 2019Date of Patent: August 20, 2024Assignees: HIROSHIMA UNIVERSITY, Y-tec Corporation, KEYLEX CORPORATION, Mazda Motor CorporationInventors: Kenjiro Sugio, Takuya Takahashi, Hitoshi Sawada, Gen Sasaki, Kazuhiro Matsugi, Yongbum Choi, Zhefeng Xu, Hajime Suetsugu, Hiroki Kondo, Hideki Manabe, Kyotaro Yamane, Kenichi Hatakeyama, Keizo Kawasaki, Tsuyoshi Itaoka, Shinsaku Seno, Yasushi Tamura, Ichirou Ino, Yoshihide Hirao
-
Patent number: 11512284Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: January 7, 2019Date of Patent: November 29, 2022Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20190136183Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: January 7, 2019Publication date: May 9, 2019Applicant: SanBio, Inc.Inventors: Mari DEZAWA, Hajime SAWADA, Hiroshi KANNO, Masahiko TAKANO
-
Patent number: 10196605Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: June 24, 2016Date of Patent: February 5, 2019Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20160304835Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing, further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: June 24, 2016Publication date: October 20, 2016Applicant: SanBio, Inc.Inventors: Mari DEZAWA, Hajime SAWADA, Hiroshi KANNO, Masahiko TAKANO
-
Patent number: 9399046Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: January 3, 2013Date of Patent: July 26, 2016Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20160151418Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: January 3, 2013Publication date: June 2, 2016Applicant: SANBIO, INC.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Patent number: 8969078Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: September 15, 2011Date of Patent: March 3, 2015Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Patent number: 8361456Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: September 10, 2009Date of Patent: January 29, 2013Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Patent number: 8133725Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: February 2, 2010Date of Patent: March 13, 2012Assignee: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20120009160Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: September 15, 2011Publication date: January 12, 2012Inventors: Mari DEZAWA, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20100310523Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: September 10, 2009Publication date: December 9, 2010Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20100144034Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: February 2, 2010Publication date: June 10, 2010Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Patent number: 7682825Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: GrantFiled: February 6, 2003Date of Patent: March 23, 2010Assignee: Sanbio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Publication number: 20060166362Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.Type: ApplicationFiled: February 6, 2003Publication date: July 27, 2006Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
-
Patent number: 6989271Abstract: There is provided a method of inducing bone marrow stromal cells to differentiate into bone marrow stromal cell-derived Schwann cells in vitro, comprising the steps of: collecting bone marrow stromal cells from bone marrow and culturing the cells in a standard essential culture medium supplemented with a serum; adding a reducing agent to the culture medium and further culturing the cells; adding a differentiation inducing agent to the culture medium and further culturing the cells; and adding a cyclic AMP-augmenting agent or a cyclic AMP analogue and/or a glial cell differentiation and survival stimulating factor to the culture medium, and further culturing the cells to obtain the bone marrow stromal cell-derived Schwann cells. There are also provided bone marrow stromal cell-derived Schwann cells obtained thereby and a pharmaceutical composition for neural regeneration that comprises them.Type: GrantFiled: June 21, 2002Date of Patent: January 24, 2006Assignee: Sanbio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Masahiko Takano
-
Publication number: 20050255593Abstract: There is provided a method of inducing bone marrow stromal cells to differentiate into bone marrow stromal cell-derived Schwann cells in vitro, comprising the steps of: collecting bone marrow stromal cells from bone marrow and culturing the cells in a standard essential culture medium supplemented with a serum; adding a reducing agent to the culture medium and further culturing the cells; adding a differentiation inducing agent to the culture medium and further culturing the cells; and adding a cyclic AMP-augmenting agent or a cyclic AMP analogue and/or a glial cell differentiation and survival stimulating factor to the culture medium, and further culturing the cells to obtain the bone marrow stromal cell-derived Schwann cells. There are also provided bone marrow stromal cell-derived Schwann cells obtained thereby and a pharmaceutical composition for neural regeneration that comprises them.Type: ApplicationFiled: July 19, 2005Publication date: November 17, 2005Applicant: SanBio, Inc.Inventors: Mari Dezawa, Hajime Sawada, Masahiko Takano
-
Publication number: 20040197309Abstract: There is provided a method of inducing bone marrow stromal cells to differentiate into bone marrow stromal cell-derived Schwann cells in vitro, comprising the steps of: collecting bone marrow stromal cells from bone marrow and culturing the cells in a standard essential culture medium supplemented with a serum; adding a reducing agent to the culture medium and further culturing the cells; adding a differentiation inducing agent to the culture medium and further culturing the cells; and adding a cyclic AMP-augmenting agent or a cyclic AMP analogue and/or a glial cell differentiation and survival stimulating factor to the culture medium, and further culturing the cells to obtain the bone marrow stromal cell-derived Schwann cells. There are also provided bone marrow stromal cell-derived Schwann cells obtained thereby and a pharmaceutical composition for neural regeneration that comprises them.Type: ApplicationFiled: December 22, 2003Publication date: October 7, 2004Inventors: Mari Dezawa, Hajime Sawada, Masahiko Takano