Patents by Inventor Hal S. Padgett

Hal S. Padgett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7273739
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3? to 5? exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: September 25, 2007
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs
  • Patent number: 7235386
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3? to 5? exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: June 26, 2007
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice
  • Patent number: 7217514
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3? to 5? exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 15, 2007
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice
  • Patent number: 7078211
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3? to 5? exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: July 18, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs
  • Patent number: 7056740
    Abstract: We describe here restriction endonucleases and their uses. Restriction endonucleases are useful in finding single nucleotide polymorphisms. They are also useful in an in vitro method of redistributing sequence variations between non-identical polynucleotide sequences.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: June 6, 2006
    Assignee: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs, Fakhrieh S. Vojdani, Mark L. Smith, John A. Lindbo, Wayne P. Fitzmaurice
  • Publication number: 20040180352
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: August 8, 2003
    Publication date: September 16, 2004
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice, Andrew A. Vaewhongs
  • Publication number: 20040142433
    Abstract: We describe here an in vitro method of redistributing sequence variations between non-identical polynucleotide sequences, by making a heteroduplex polynucleotide from two non-identical polynucleotides; introducing a nick in one strand at or near a base pair mismatch site; removing mismatched base(s) from the mismatch site where the nick occurred; and using the opposite strand as template to replace the removed base(s) with bases that complement base(s) in the first strand. By this method, information is transferred from one strand to the other at sites of mismatch.
    Type: Application
    Filed: October 10, 2003
    Publication date: July 22, 2004
    Inventors: Hal S. Padgett, Wayne P. Fitzmaurice, John A. Lindbo, Andrew A. Vaewhongs, Fakhrieh S. Vojdani, Mark L. Smith
  • Publication number: 20040110130
    Abstract: We describe here an in vitro method of redistributing sequence variations between non-identical polynucleotide sequences, by making a heteroduplex polynucleotide from two non-identical polynucleotides; introducing a nick in one strand at or near a base pair mismatch site; removing mismatched base(s) from the mismatch site where the nick occurred; and using the opposite strand as template to replace the removed base(s) with bases that complement base(s) in the first strand. By this method, information is transferred from one strand to the other at sites of mismatch.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 10, 2004
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice
  • Publication number: 20030219878
    Abstract: Restriction Independent Cloning Events (RICE) are made by generating 5′ overhangs (sticky ends). The polynucleotides to be joined are reacted with a DNA polymerase, having 3′ to 5′ exonuclease activity and 5′ to 3′ polymerizing activity, less than all of the dNTPs, a kinase (optional) and a ligase. The complementary 5′ overhangs anneal and ligate.
    Type: Application
    Filed: November 1, 2002
    Publication date: November 27, 2003
    Applicant: LARGE SCALE BIOLOGY CORPORATION
    Inventors: John A. Lindbo, Hal S. Padgett
  • Publication number: 20030186261
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: July 25, 2002
    Publication date: October 2, 2003
    Applicant: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice
  • Publication number: 20030166169
    Abstract: The present invention relates to a method for constructing viral nucleic acids in a cell-free manner. In essence, the cell-free method entails the immobilization of a fragment of a double-stranded DNA sequence on a solid support and the assembly of the remaining fragments of the double-stranded DNA sequence onto the immobilized fragment. If the viral nucleic acid is derived from an RNA virus, the instant method further comprises the step of in vitro transcription of the assembled double-stranded DNA sequence to yield an RNA viral nucleic acid.
    Type: Application
    Filed: July 15, 2002
    Publication date: September 4, 2003
    Inventors: Hal S. Padgett, John A. Lindbo
  • Publication number: 20030157495
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: March 14, 2002
    Publication date: August 21, 2003
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs, Fakhrieh S. Vojdani, Mark L. Smith
  • Publication number: 20030157682
    Abstract: We describe here restriction endonucleases and their uses. Restriction endonucleases are useful in finding single nucleotide polymorphisms. They are also useful in an in vitro method of redistributing sequence variations between non-identical polynucleotide sequences.
    Type: Application
    Filed: January 31, 2003
    Publication date: August 21, 2003
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs, Fakhrieh S. Vojdani, Mark L. Smith, John A. Lindbo, Wayne P. Fitzmaurice
  • Publication number: 20030148315
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: August 1, 2002
    Publication date: August 7, 2003
    Inventors: Hal S. Padgett, Andrew A. Vaewhongs
  • Publication number: 20030036641
    Abstract: The invention provides methods of forcing recombination between polynucleotides. The methods can include the steps of, (a) generating a single strand of a first polynucleotide; (b) generating a single strand of a second polynucleotide, wherein the second polynucleotide is partially complementary to the first polynucleotide; (c) fragmenting the single strand of the first polynucleotide to generate single stranded first polynucleotide fragments; (d) fragmenting the single strand of the second polynucleotide to generate single stranded second polynucleotide fragments; (e) annealing the single stranded first polynucleotide fragments with the single stranded second polynucleotide fragments; and (f) extending the annealed polynucleotide fragments.
    Type: Application
    Filed: January 31, 2001
    Publication date: February 20, 2003
    Inventors: Hal S. Padgett, Wayne P. Fitzmaurice, John A. Lindbo
  • Publication number: 20030027173
    Abstract: The present invention provides methods for rapidly determining the function of nucleic acid sequences by transfecting the same into a host organism to effect expression. Phenotypic and biochemical changes produced thereby are then analyzed to ascertain the function of the nucleic acids which have been transfected into the host organism. The invention also provides methods for silencing endogenous genes by transfecting hosts with nucleic acid sequences to effect expression of the same. The present invention also provides methods for selecting desired functions of RNAs and proteins by the use of virus vectors to express libraries of nucleic acid sequence variants. Moreover, the present invention provides methods for inhibiting an endogenous protease of a plant host.
    Type: Application
    Filed: February 5, 2002
    Publication date: February 6, 2003
    Inventors: Guy Della-Cioppa, Robert L. Erwin, Wayne P. Fitzmaurice, Kathleen Hanley, Monto H. Kumagai, John A. Lindbo, David R. McGee, Hal S. Padgett, Gregory P. Pogue
  • Publication number: 20020177160
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: July 25, 2002
    Publication date: November 28, 2002
    Applicant: Large Scale Biology Corporation
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice
  • Patent number: 6468745
    Abstract: The present invention relates to a method for using viral vectors to bear populations of sequence variants and using plant hosts to select the sequences that exhibit the desired traits.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: October 22, 2002
    Assignee: Large Scale Biology Corporation
    Inventors: Wayne P. Fitzmaurice, John A. Lindbo, Hal S. Padgett, Gregory P. Pogue
  • Publication number: 20020146732
    Abstract: We describe here an in vitro method of increasing complementarity in a heteroduplex polynucleotide sequence. The method uses annealing of opposite strands to form a polynucleotide duplex with mismatches. The heteroduplex polynucleotide is combined with an effective amount of enzymes having strand cleavage activity, 3′ to 5′ exonuclease activity, and polymerase activity, and allowing sufficient time for the percentage of complementarity to be increased within the heteroduplex. Not all heteroduplex polynucleotides will necessarily have all mismatches resolved to complementarity. The resulting polynucleotide is optionally ligated. Several variant polynucleotides result. At sites where either of the opposite strands has templated recoding in the other strand, the resulting percent complementarity of the heteroduplex polynucleotide sequence is increased. The parent polynucleotides need not be cleaved into fragments prior to annealing heterologous strands. Therefore, no reassembly is required.
    Type: Application
    Filed: February 1, 2002
    Publication date: October 10, 2002
    Inventors: Hal S. Padgett, John A. Lindbo, Wayne P. Fitzmaurice