Patents by Inventor Halbert CHONG

Halbert CHONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932934
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: March 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Patent number: 11898236
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 13, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyong Wang, Halbert Chong, John C. Forster, Irena H. Wysok, Tiefeng Shi, Gang Fu, Renu Whig, Keith A Miller, Sundarapandian Ramalinga Vijayalakshmi Reddy, Jianxin Lei, Rongjun Wang, Tza-Jing Gung, Kirankumar Neelasandra Savandaiah, Avinash Nayak, Lei Zhou
  • Publication number: 20230377892
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method for processing a substrate comprises forming a plasma reaction between titanium tetrachloride (TlCl4), hydrogen (H2), and argon (Ar) in a region between a lid heater and a showerhead of a process chamber or the showerhead and a substrate while providing RF power at a pulse frequency of about 5 kHz to about 100 kHz and at a duty cycle of about 10% to about 20% and flowing reaction products into the process chamber to selectively form a titanium material layer upon a silicon surface of the substrate.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: Yiyang WAN, Weifeng YE, Shumao ZHANG, Gary HOW, Jiang LU, Lei ZHOU, Dien-yeh WU, Douglas LONG, Avgerinos V. GELATOS, Ying-Bing JIANG, Rongjun WANG, Xianmin TANG, Halbert CHONG
  • Patent number: 11661652
    Abstract: Embodiments described herein relate to a gas line cleaning system and a method of cleaning gas lines. The gas line cleaning system includes a connector having a first end and a second end, and a fluid system. The fluid system includes a fluid source configured to flow a fluid through a fluid conduit connected to the first end, and an ultrasonic transducer coupled to the fluid conduit configured to apply an ultrasonic energy to the fluid conduit to agitate the fluid. The ultrasonic energy creates a mechanical energy that reverberates in the fluid conduit and propagates into the fluid to remove particles that may have formed on an inside surface of a gas line connected to the second end and carry away particles inside the gas line.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 30, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Gang Peng, Halbert Chong, Marcus Pereira, David W. Groechel
  • Publication number: 20230122956
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 20, 2023
    Inventors: Zhiyong WANG, Halbert CHONG, John C. FORSTER, Irena H. WYSOK, Tiefeng SHI, Gang FU, Renu WHIG, Keith A. MILLER, Sundarapandian Ramalinga Vijayalakshmi REDDY, Jianxin LEI, Rongjun WANG, Tza-Jing GUNG, Kirankumar Neelasandra SAVANDAIAH, Avinash NAYAK, Lei ZHOU
  • Publication number: 20230073011
    Abstract: Methods and apparatus reduce defects in substrates processed in a physical vapor (PVD) chamber. In some embodiments, a method for cleaning a process kit disposed in an inner volume of a process chamber includes positioning a non-sputtering shutter disk on a substrate support of the PVD chamber; energizing an oxygen-containing cleaning gas disposed in the inner volume of the PVD chamber to create a plasma reactive with carbon-based materials; and heating the process kit having a carbon-based material adhered thereto while exposed to the plasma to remove at least a portion of the carbon-based material adhered to the process kit.
    Type: Application
    Filed: August 31, 2022
    Publication date: March 9, 2023
    Inventors: Zhiyong WANG, Halbert CHONG, Irena H. WYSOK, Jianxin LEI, Rongjun WANG, Lei ZHOU, Kirankumar Neelasandra SAVANDAIAH, Sundarapandian Ramalinga Vijayalakshmi REDDY
  • Publication number: 20230002885
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Patent number: 11473189
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20220310364
    Abstract: Methods and apparatus for cleaning a process kit configured for processing a substrate are provided. For example, a process chamber for processing a substrate can include a chamber wall; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an ACT connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Halbert CHONG, Rong TAO, Jianxin LEI, Rongjun WANG, Keith A. Miller, Irena H. Wysok, Tza-Jing Gung, Xing Chen
  • Publication number: 20220310363
    Abstract: Methods and apparatus for cleaning a process kit configured for processing a substrate are provided. For example, a process chamber for processing a substrate can include a chamber wall; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an ACT connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Halbert CHONG, Rong TAO, Jianxin LEI, Rongjun WANG, Keith A. Miller, Irena H. Wysok, Tza-Jing Gung, Xing Chen
  • Patent number: 11289312
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph M. Allen, Vanessa Faune, Zhong Qiang Hua, Kirankumar Neelasandra Savandaiah, Anantha K. Subramani, Philip A. Kraus, Tza-Jing Gung, Lei Zhou, Halbert Chong, Vaibhav Soni, Kishor Kalathiparambil
  • Patent number: 11249390
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from tellurium, germanium and antimony.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: February 15, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shuwei Liu, Vibhu Jindal, Halbert Chong
  • Patent number: 11251024
    Abstract: Embodiments generally relate to a chamber component to be used in plasma processing chambers for semiconductor or display processing. In one embodiment, a chamber component includes a textured surface having a surface roughness ranging from about 150 microinches to about 450 microinches and a coating layer disposed on the textured surface. The coating layer may be a silicon layer having a purity ranging from about 90 weight percent to about 99 weight percent, a thickness ranging from about 50 microns to about 500 microns, and an electrical resistivity ranging from about 1 E-3 ohm*m to about 1 E3 ohm*m. The coating layer provides strong adhesion for materials deposited in the plasma processing chamber, which reduces the materials peeling from the chamber component. The coating layer also enables oxygen plasma cleaning for further reducing materials deposited on the chamber component and provides the protection of the textured surface located therebelow.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: February 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Hsin-wei Tseng, Casey Jane Madsen, Yikai Chen, Irena Wysok, Halbert Chong
  • Publication number: 20210319989
    Abstract: Methods and apparatus for cleaning a process kit configured for processing a substrate are provided. For example, a process chamber for processing a substrate can include a chamber wall; a sputtering target disposed in an upper section of the inner volume; a pedestal including a substrate support having a support surface to support a substrate below the sputtering target; a power source configured to energize sputtering gas for forming a plasma in the inner volume; a process kit surrounding the sputtering target and the substrate support; and an ACT connected to the pedestal and a controller configured to tune the pedestal using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit, wherein the predetermined potential difference is based on a percentage of total capacitance of the ACT and a stray capacitance associated with a grounding path of the process chamber.
    Type: Application
    Filed: April 13, 2020
    Publication date: October 14, 2021
    Inventors: Halbert CHONG, Rong TAO, Jianxin LEI, Rongjun WANG, Keith A. Miller, Irena H. Wysok, Tza-Jing Gung, Xing Chen
  • Publication number: 20210043429
    Abstract: Embodiments generally relate to a chamber component to be used in plasma processing chambers for semiconductor or display processing. In one embodiment, a chamber component includes a textured surface having a surface roughness ranging from about 150 microinches to about 450 microinches and a coating layer disposed on the textured surface. The coating layer may be a silicon layer having a purity ranging from about 90 weight percent to about 99 weight percent, a thickness ranging from about 50 microns to about 500 microns, and an electrical resistivity ranging from about 1 E-3 ohm*m to about 1 E3 ohm*m. The coating layer provides strong adhesion for materials deposited in the plasma processing chamber, which reduces the materials peeling from the chamber component. The coating layer also enables oxygen plasma cleaning for further reducing materials deposited on the chamber component and provides the protection of the textured surface located therebelow.
    Type: Application
    Filed: July 20, 2020
    Publication date: February 11, 2021
    Inventors: Hsin-wei TSENG, Casey Jane MADSEN, Yikai CHEN, Irena WYSOK, Halbert CHONG
  • Publication number: 20200395198
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: ADOLPH M. ALLEN, VANESSA FAUNE, ZHONG QIANG HUA, KIRANKUMAR NEELASANDRA SAVANDAIAH, ANANTHA K. SUBRAMANI, PHILIP A. KRAUS, TZA-JING GUNG, LEI ZHOU, HALBERT CHONG, VAIBHAV SONI, KISHOR KALATHIPARAMBIL
  • Publication number: 20200255938
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20200249557
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer made from tellurium, germanium and antimony.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 6, 2020
    Inventors: Shuwei Liu, Vibhu Jindal, Halbert Chong
  • Publication number: 20190352775
    Abstract: Embodiments described herein relate to a gas line cleaning system and a method of cleaning gas lines. The gas line cleaning system includes a connector having a first end and a second end, and a fluid system. The fluid system includes a fluid source configured to flow a fluid through a fluid conduit connected to the first end, and an ultrasonic transducer coupled to the fluid conduit configured to apply an ultrasonic energy to the fluid conduit to agitate the fluid. The ultrasonic energy creates a mechanical energy that reverberates in the fluid conduit and propagates into the fluid to remove particles that may have formed on an inside surface of a gas line connected to the second end and carry away particles inside the gas line.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Inventors: Gang PENG, Halbert CHONG, Marcus PEREIRA, David W. GROECHEL