Patents by Inventor Haldane S. Henry

Haldane S. Henry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564497
    Abstract: A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 7, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Patent number: 9530853
    Abstract: A semiconductor device with reduced leakage current and a method of making the same is disclosed. The semiconductor device includes a substrate having a device layer, a dielectric layer, and a gate metal opening within the dielectric layer between a source contact and a gate contact. A first metal layer is disposed within the gate metal opening, and a second metal layer is disposed directly onto the second metal layer, wherein the second metal layer is oxidized and has a thickness that ranges from about 4 Angstroms to about 20 Angstroms to limit a leakage current of a total gate periphery to between around 0.1 ?A/mm and around 50 ?A/mm. A current carrying layer is disposed on the second metal layer. In one embodiment, the first metal layer is nickel (Ni), the second metal layer is palladium (Pd), and the current carrying layer is gold (Au).
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: December 27, 2016
    Assignee: Qorvo US, Inc.
    Inventors: Haldane S. Henry, Eunki Hong, Charles S. Whitman
  • Publication number: 20150295053
    Abstract: A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
    Type: Application
    Filed: June 24, 2015
    Publication date: October 15, 2015
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Patent number: 9136341
    Abstract: A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 15, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Publication number: 20150255560
    Abstract: A semiconductor device with reduced leakage current and a method of making the same is disclosed. The semiconductor device includes a substrate having a device layer, a dielectric layer, and a gate metal opening within the dielectric layer between a source contact and a gate contact. A first metal layer is disposed within the gate metal opening, and a second metal layer is disposed directly onto the second metal layer, wherein the second metal layer is oxidized and has a thickness that ranges from about 4 Angstroms to about 20 Angstroms to limit a leakage current of a total gate periphery to between around 0.1 ?A/mm and around 50 ?A/mm. A current carrying layer is disposed on the second metal layer. In one embodiment, the first metal layer is nickel (Ni), the second metal layer is palladium (Pd), and the current carrying layer is gold (Au).
    Type: Application
    Filed: February 20, 2015
    Publication date: September 10, 2015
    Inventors: Haldane S. Henry, Eunki Hong, Charles S. Whitman
  • Patent number: 9123645
    Abstract: Embodiments include methods of making semiconductor devices with low leakage Schottky contacts. An embodiment includes providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 1, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Patent number: 9093420
    Abstract: Methods for fabricating a field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends are disclosed. The methods provide field effect transistors that each include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. At least one method includes etching at least one gate channel into the passivation layer with a predetermined slope that reduces electric fields at a gate edge. Other methods include steps for fabricating a sloped gate foot, a round end, and/or a chamfered end to further improve high voltage operation.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 28, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Patent number: 9029986
    Abstract: Semiconductor devices are provided with dual passivation layers. A semiconductor layer is formed on a substrate and covered by a first passivation layer (PL-1). PL-1 and part of the semiconductor layer are etched to form a device mesa. A second passivation layer (PL-2) is formed over PL-1 and exposed edges of the mesa. Vias are etched through PL-1 and PL-2 to the semiconductor layer where source, drain and gate are to be formed. Conductors are applied in the vias for ohmic contacts for the source-drain and a Schottky contact for the gate. Interconnections over the edges of the mesa couple other circuit elements. PL-1 avoids adverse surface states near the gate and PL-2 insulates edges of the mesa from overlying interconnections to avoid leakage currents. An opaque alignment mark is desirably formed at the same time as the device to facilitate alignment when using transparent semiconductors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 12, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry
  • Publication number: 20140087550
    Abstract: Embodiments include methods of making semiconductor devices with low leakage Schottky contacts. An embodiment includes providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 27, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: BRUCE M. GREEN, HALDANE S. HENRY, CHUN-LI LIU, KAREN E. MOORE, MATTHIAS PASSLACK
  • Patent number: 8592878
    Abstract: Embodiments include semiconductor devices with low leakage Schottky contacts. An embodiment is formed by providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the first mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 26, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Publication number: 20130277687
    Abstract: A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 24, 2013
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Publication number: 20130280877
    Abstract: Methods for fabricating a field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends are disclosed. The methods provide field effect transistors that each include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. At least one method includes etching at least one gate channel into the passivation layer with a predetermined slope that reduces electric fields at a gate edge. Other methods include steps for fabricating a sloped gate foot, a round end, and/or a chamfered end to further improve high voltage operation.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 24, 2013
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Kevin Wesley Kobayashi, Haldane S. Henry, Andrew P. Ritenour
  • Publication number: 20130015462
    Abstract: Semiconductor devices are provided with dual passivation layers. A semiconductor layer is formed on a substrate and covered by a first passivation layer (PL-1). PL-1 and part of the semiconductor layer are etched to form a device mesa. A second passivation layer (PL-2) is formed over PL-1 and exposed edges of the mesa. Vias are etched through PL-1 and PL-2 to the semiconductor layer where source, drain and gate are to be formed. Conductors are applied in the vias for ohmic contacts for the source-drain and a Schottky contact for the gate. Interconnections over the edges of the mesa couple other circuit elements. PL-1 avoids adverse surface states near the gate and PL-2 insulates edges of the mesa from overlying interconnections to avoid leakage currents. An opaque alignment mark is desirably formed at the same time as the device to facilitate alignment when using transparent semiconductors.
    Type: Application
    Filed: May 25, 2012
    Publication date: January 17, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: BRUCE M. GREEN, HALDANE S. HENRY
  • Patent number: 8193591
    Abstract: Semiconductor devices (61) and methods (80-89, 100) are provided with dual passivation layers (56, 59). A semiconductor layer (34) is formed on a substrate (32) and covered by a first passivation layer (PL-1) (56). PL-1 (56) and part (341) of the semiconductor layer (34) are etched to form a device mesa (35). A second passivation layer (PL-2) (59) is formed over PL-1 (56) and exposed edges (44) of the mesa (35). Vias (90, 92, 93) are etched through PL-1 (56) and PL-2 (59) to the semiconductor layer (34) where source (40), drain (42) and gate are to be formed. Conductors (41, 43, 39) are applied in the vias (90, 92, 93) for ohmic contacts for the source-drain (40, 42) and a Schottky contact (39) for the gate. Interconnections (45, 47) over the edges (44) of the mesa (35) couple other circuit elements. PL-1 (56) avoids adverse surface states (52) near the gate and PL-2 (59) insulates edges (44) of the mesa (35) from overlying interconnections (45, 47) to avoid leakage currents (46).
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: June 5, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry
  • Publication number: 20110156051
    Abstract: Embodiments include semiconductor devices with low leakage Schottky contacts. An embodiment is formed by providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the first mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Patent number: 7935620
    Abstract: Methods and apparatus are described for semiconductor devices. A method comprises providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor, and without removing the first mask, forming a Schottky contact of a first material on the exposed portion of the semiconductor, then removing the first mask, and using a further mask, forming a step-gate conductor of a second material electrically coupled to the Schottky contact and overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Publication number: 20090146191
    Abstract: Method and apparatus are described for semiconductor devices. The method (100) comprises, providing a partially completed semiconductor device (31-1) including a substrate (21), a semiconductor (22) on the substrate (21) and a passivation layer (25) on the semiconductor (22), and using a first mask (32), locally etching the passivation layer (25) to expose a portion (36) of the semiconductor (22), and without removing the first mask (32) forming a Schottky contact (42-1) of a first material on the exposed portion (36) of the semiconductor (22), then removing the first mask (32) and using a further mask (44), forming a step-gate conductor (48-1) of a second material electrically coupled to the Schottky contact (42-1) and overlying parts (25-1) of the passivation layer (25) adjacent to the Schottky contact (42-1).
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Patent number: 6798064
    Abstract: An electronic component includes a substrate (110) and an airbridge (890) located over the substrate. The airbridge has at least a first layer and a second layer over the first layer. The airbridge is electrically conductive where the first layer of the airbridge is less resistive than the second layer of the airbridge.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: September 28, 2004
    Assignee: Motorola, Inc.
    Inventors: Haldane S. Henry, Darrell G. Hill, Colby G. Rampley
  • Patent number: 6465297
    Abstract: A method of manufacturing a semiconductor component includes forming a first capacitor electrode (126) over a substrate (110), forming a capacitor dielectric layer (226) over the first capacitor electrode, and forming a second capacitor electrode (326) over the capacitor dielectric layer. The capacitor dielectric layer is made of aluminum.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: October 15, 2002
    Assignee: Motorola, Inc.
    Inventors: Haldane S. Henry, Darrell G. Hill, Jonathan K. Abrokwah, Mariam G. Sadaka