Patents by Inventor Halim G. Santoso

Halim G. Santoso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9956848
    Abstract: A method of heating a cabin of a motor vehicle that includes an internal combustion engine operatively connected to an exhaust system having a catalyst, and a heating, ventilation, and air conditioning (HVAC) system is provided. The method includes detecting a request to increase temperature inside the cabin, supplying fuel and air to the engine, and motoring the engine to pump the fuel and air into the exhaust system. The method also includes heating the catalyst to combust the fuel and air inside the catalyst such that a stream of post-combustion exhaust gas is generated. The method additionally includes channeling the generated stream of post-combustion exhaust gas to the HVAC system such that a temperature of a coolant circulated through the HVAC system is increased to heat the cabin. A system configured to perform the above method is also disclosed.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: May 1, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan Nathaniel Roos, Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn
  • Patent number: 9828932
    Abstract: A system according to the principles of the present disclosure includes a start-stop module, a pre-ignition risk module, and a cooling control module. The start-stop module stops and restarts an engine independent from an input received from an ignition system. The pre-ignition risk module monitors a risk of pre-ignition when the engine is restarted and generates a signal based on the risk of pre-ignition. The cooling control module controls a cooling system to circulate coolant through the engine when the engine is stopped in response to the risk of pre-ignition.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 28, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Halim G. Santoso, Eugene V. Gonze, James R. Yurgil
  • Patent number: 9771845
    Abstract: A regeneration system includes a first module, a mode selection module and an adsorber regeneration control (ARC) module. The first module monitors at least one of (i) a temperature of a first catalyst of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the first catalyst. The mode selection module is configured to select an adsorber regeneration mode and generates a mode signal based on the at least one of the temperature and the active catalyst volume. The ARC module at least one of activates an air pump and cranks the engine to regenerate an adsorber of the catalyst assembly while the engine is deactivated based on the mode signal.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 9482125
    Abstract: A regeneration system includes a first comparison module that at least one of (i) compares a first temperature of an adsorber to an adsorber release temperature and (ii) compares a second temperature of an engine to a predetermined temperature, and generates a first comparison signal. A second comparison module that compares a particulate matter output of the engine with a predetermined output and generates a second comparison signal. A mode selection module that selects a mode and generates a mode signal based on the first comparison signal and the second comparison signal. A bypass valve control module that adjusts position of a bypass valve to bypass at least one of a particulate matter (PM) filter and the adsorber based on the mode signal.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: November 1, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Halim G. Santoso, Michael J. Paratore, Jr.
  • Patent number: 9458812
    Abstract: An engine control system comprises a temperature control module and an engine disabling module. The temperature control module regulates a first temperature of an electrically heated catalyst (EHC) based on a first predetermined light-off temperature while an engine is shut down. The engine disabling module selectively disables start up of the engine when a second temperature of a passive catalyst is less than a second predetermined light-off temperature while a maximum torque output of an electric motor is greater than a desired torque output.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 4, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Halim G Santoso, Eugene V. Gonze, Brian Spohn, Bryan Nathaniel Roos
  • Patent number: 9410458
    Abstract: A control system includes a state of charge module and a control module. The state of charge module receives a parameter associated with a battery in a vehicle and determines a state of charge of the battery based on the parameter. The control module activates a heater in a catalytic converter in an exhaust system of the vehicle based on the state of charge.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: August 9, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian Spohn, Bryan Nathaniel Roos
  • Patent number: 9322352
    Abstract: A system according to the principles of the present disclosure includes a stop-start module and a throttle control module. The stop-start module stops an engine when a driver depresses a brake pedal while an ignition system is on and the engine is idling. The throttle control module selectively opens a throttle valve when fuel injection in the engine is stopped while the ignition system is on based on engine speed and a manifold pressure within an intake manifold. The stop-start module starts the engine when the driver releases the brake pedal.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: April 26, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Halim G. Santoso, Robert Douglas Shafto, James R. Yurgil
  • Patent number: 9249750
    Abstract: A system according to the principles of the present disclosure includes a stop-start module and a fuel control module. The stop-start module stops an engine and thereby interrupts an engine cycle when a driver depresses a brake pedal while an ignition system is on and the engine is idling. The stop-start module restarts the engine when the driver releases the brake pedal. The fuel control module, when the engine is restarted, selectively injects fuel into a cylinder of the engine as the cylinder completes the interrupted engine cycle based on an amount of crankshaft rotation corresponding to a difference between a position of a piston in the cylinder when the piston is stopped and top dead center.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: February 2, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Halim G. Santoso, James R. Yurgil, Stuart R. Smith, Robert Douglas Shafto
  • Patent number: 9080526
    Abstract: An auto ignition mitigation system comprises a piston position module that determines a position of a piston within a cylinder and a temperature module that determines a first temperature of air within the cylinder. A fuel enrichment module communicates with the piston position module and the temperature module and determines a first fuel quantity based on the first temperature and the position of the piston. A fuel control module communicates with the fuel enrichment module and provides the first fuel quantity to the cylinder after the engine is started and before a first exhaust stroke of the piston.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 14, 2015
    Inventors: Halim G. Santoso, Stuart R. Smith, James R. Yurgil
  • Patent number: 8997464
    Abstract: A waste heat recovery system with an integrated hydrocarbon adsorber for a vehicle having an internal combustion engine that generates exhaust gas containing hydrocarbons, and a catalytic converter, includes an exhaust gas conduit, an exhaust gas heat exchanger, a heat exchanger bypass valve, a coolant circuit with a coolant bypass and a coolant bypass valve, and a controller. The exhaust gas heat exchanger includes at least one channel through which the exhaust gas is flowable, the channel having an interior surface coated with a hydrocarbon adsorbing material configured to adsorb hydrocarbons. The heat exchanger and coolant bypass valves are configured to selectively direct at least a portion of the exhaust gas and the coolant, respectively, to the exhaust gas heat exchanger or to bypass it. They are controlled by the controller such that the hydrocarbons in the exhaust gas are selectively adsorbable by and desorbable from the coating.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 7, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Halim G. Santoso, Eugene V. Gonze, Chang H. Kim
  • Patent number: 8904993
    Abstract: An engine mode control system for an internal combustion engine includes a transition control module and an intake cam phaser control module. The transition control module controls a transition from a first engine mode to a second engine mode and determines a desired air mass. The engine is operated at a first air/fuel ratio (AFR) in the first engine mode and at a second AFR in the second engine mode. The desired air mass is based on the second AFR. The intake cam phaser control module adjusts the intake cam phaser based on the desired air mass during the transition.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: December 9, 2014
    Inventors: Halim G. Santoso, Bruce F. Hunter, Donovan L. Dibble
  • Publication number: 20140352303
    Abstract: A waste heat recovery system with an integrated hydrocarbon adsorber for a vehicle having an internal combustion engine that generates exhaust gas containing hydrocarbons, and a catalytic converter, includes an exhaust gas conduit, an exhaust gas heat exchanger, a heat exchanger bypass valve, a coolant circuit with a coolant bypass and a coolant bypass valve, and a controller. The exhaust gas heat exchanger includes at least one channel through which the exhaust gas is flowable, the channel having an interior surface coated with a hydrocarbon adsorbing material configured to adsorb hydrocarbons. The heat exchanger and coolant bypass valves are configured to selectively direct at least a portion of the exhaust gas and the coolant, respectively, to the exhaust gas heat exchanger or to bypass it. They are controlled by the controller such that the hydrocarbons in the exhaust gas are selectively adsorbable by and desorbable from the coating.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Halim G. Santoso, Eugene V. Gonze, Chang H. Kim
  • Patent number: 8863505
    Abstract: A catalyst heating system includes a first monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The first monitoring module monitors at least one of (i) a first temperature of a first catalyst of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the catalyst assembly. The mode selection module is configured to select an EHC heating mode and at least one of a fuel enrichment mode and a secondary air injection mode based on the at least one of the first temperature and the active catalyst volume. The EHC control module controls current to one of the first catalyst and a second catalyst of the catalyst assembly based on the mode signal.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 21, 2014
    Inventors: Halim G. Santoso, Eugene V. Gonze, Bryan Nathaniel Roos, Brian L. Spohn
  • Patent number: 8843295
    Abstract: A combustion control system for a vehicle comprises a position determination module and an ethanol determination module. The position determination module determines a crankshaft angle where a predetermined percentage of a fuel was combusted within a cylinder of an engine during an engine cycle based on one of pressure within the cylinder measured by a cylinder pressure sensor during the engine cycle and torque on a crankshaft measured by a torque sensor during the engine cycle. The ethanol determination module determines an ethanol content of the fuel based on the crankshaft angle.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: September 23, 2014
    Inventors: Halim G. Santoso, Audley F. Brown
  • Publication number: 20140257676
    Abstract: A system according to the principles of the present disclosure includes a start-stop module, a pre-ignition risk module, and a cooling control module. The start-stop module stops and restarts an engine independent from an input received from an ignition system. The pre-ignition risk module monitors a risk of pre-ignition when the engine is restarted and generates a signal based on the risk of pre-ignition. The cooling control module controls a cooling system to circulate coolant through the engine when the engine is stopped in response to the risk of pre-ignition.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Halim G. Santoso, Eugene V. Gonze, James R. Yurgil
  • Patent number: 8783016
    Abstract: A system may include a hydrocarbon (HC) absorber positioned in an exhaust flow path and an electrically heated catalyst (EHC) positioned in the exhaust flow path downstream of the HC absorber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 22, 2014
    Inventors: Eugene V. Gonze, Halim G Santoso, Frank Ament
  • Patent number: 8776500
    Abstract: A control system for a hybrid vehicle is presented. The control system can include an air/fuel ratio control module that selectively commands a rich air/fuel ratio upon starting an engine based on a temperature of an electrically heated catalyst (EHC) in an exhaust system of the engine, wherein the EHC includes a hydrocarbon (HC) adsorber. The control system can include an air pump control module that selectively activates an air pump supplying air into the exhaust system upstream from the EHC based on whether the engine is on and at least one of whether the HC adsorber is full and whether the EHC is saturated with oxygen. The control system can also include an electric heater control module that selectively activates an electric heater of the EHC based on whether the engine is on and the temperature of the EHC, as well as whether the HC adsorber is full.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 15, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Bryan N. Roos
  • Patent number: 8764607
    Abstract: A start-stop system includes a fuel type module that determines a fuel type of a fuel supplied to an engine. A threshold module determines a first threshold based on the fuel type. A temperature module estimates a temperature of a catalyst of an exhaust system of the engine. A comparison module compares the temperature to the first threshold and generates a comparison signal. A power module adjusts power to a heating circuit based on the comparison signal. The heating circuit is configured to increase temperature of the catalyst. The power module adjusts the power to the heating circuit to increase the temperature of the catalyst when the engine is shutdown. An engine control module shuts down and restarts the engine to reduce idling time of the engine.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 1, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8756924
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first temperature of a non-EHC of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the catalyst assembly. The mode selection module is configured to select an EHC heating mode and generate a mode signal based on the at least one of the first temperature and the active catalyst volume. The EHC control module controls current to an EHC of the catalyst assembly based on the mode signal.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: June 24, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos
  • Patent number: 8733084
    Abstract: A bypass HC—NOx system includes a NOx conversion control module that generates a signal indicating whether a close coupled catalyst is active. The system further includes a bypass valve control module that, in response to the signal, opens a bypass valve located in an active HC—NOx adsorber assembly to purge hydrocarbons from an HC adsorber, wherein the bypass valve is located upstream from the HC adsorber and a NOx adsorber. The bypass valve control module also determines a temperature of a three way catalyst and closes the bypass valve to purge nitrogen dioxide from the NOx adsorber if the temperature of the three way catalyst is greater than a predetermined temperature threshold.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 27, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso