Patents by Inventor Hallee Zox Deutchman

Hallee Zox Deutchman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180347014
    Abstract: A nickel-based superalloy component includes a nickel-based superalloy metal. The nickel-based superalloy metal includes, on a weight basis of the overall superalloy metal: about 9.5% to about 10.5% tungsten, about 9.0% to about 11.0% cobalt, about 8.0% to about 8.8% chromium, about 5.3% to about 5.7% aluminum, about 2.8% to about 3.3% tantalum, about 0.3% to about 1.6% hafnium, about 0.5% to about 0.8% molybdenum, about 0.005% to about 0.04% carbon, and a majority of nickel. In some examples, the component includes a gas turbine engine component, such as a turbine blade or a turbine vane, and the metal form of the nickel-based superalloy may be used as a filler metal for welding a casting alloy, a wrought alloy, or a powder metal alloy or other wrought forms.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Szuromi, Hallee Zox Deutchman, Brian G. Baughman, Donald G. Godfrey, Harry Lester Kington, Mark C. Morris
  • Publication number: 20180347013
    Abstract: A method of manufacturing a nickel-based superalloy component includes providing or obtaining, in a powdered form, a build material alloy including, on a weight basis of the overall build material alloy: about 9.5% to about 10.5% tungsten, about 9.0% to about 11.0% cobalt, about 8.0% to about 8.8% chromium, about 5.3% to about 5.7% aluminum, about 2.8% to about 3.3% tantalum, about 0.3% to about 1.6% hafnium, about 0.5% to about 0.8% molybdenum, about 0.005% to about 0.04% carbon, and a majority of nickel. The method further includes subjecting the build material alloy to a high energy density beam in an additive manufacturing process to selectively fuse portions of the build material to form a built component and subjecting the built component to a finishing process to precipitate a gamma-prime phase of the nickel-based superalloy.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Szuromi, Hallee Zox Deutchman, Brian G. Baughman, Donald G. Godfrey, Harry Lester Kington, Mark C. Morris
  • Publication number: 20160348216
    Abstract: Nickel-based superalloys and additive manufacturing processes using nickel-based superalloys are disclosed herein. For example, a nickel-based superalloy includes, on a weight basis of the overall superalloy: about 9.5% to about 10.5% tungsten, about 9.0% to about 11.0% cobalt, about 8.0% to about 8.8% chromium, about 5.3% to about 5.7% aluminum, about 2.8% to about 3.3% tantalum, about 0.3% to about 1.6% hafnium, about 0.5% to about 0.8% molybdenum, about 0.005% to about 0.04% carbon, and a majority of nickel. Exemplary additive manufacturing processes include subjecting such a nickel-based superalloy in powdered build material form to a high energy density beam in an additive manufacturing process to selectively fuse portions of the build material to form a built component and subjecting the built component to a finishing process to precipitate a gamma-prime phase of the nickel-based superalloy.
    Type: Application
    Filed: December 16, 2014
    Publication date: December 1, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Szuromi, Hallee Zox Deutchman, Brian G. Baughman, Donald G. Godfrey, Harry Lester Kington, Mark C. Morris