Patents by Inventor Hamid R. Azimi

Hamid R. Azimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240030147
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20240030204
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20240030065
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20230317592
    Abstract: In one embodiment, a package substrate includes a substrate core, buildup layers, and one or more conductive traces. The substrate core includes at least one dielectric layer with hollow glass fibers. The buildup layers include dielectric layers below and above the substrate core.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Brandon Christian Marin, Hamid R. Azimi, Sri Chaitra Jyotsna Chavali, Tarek A. Ibrahim, Wei-Lun K Jen, Rahul Manepalli, Kevin T. McCarthy
  • Publication number: 20160190027
    Abstract: Methods of forming molded panel coreless package structures are described. Those methods and structures may include fabrication of embedded die packages using large panel format and use of molding to improve rigidity of the panel, as well as to embed the die in a non-sacrificial mold material. The methods and structures described include methods for manufacturing thin, coreless substrate architectures which possess low warpage.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Applicant: Intel Corporation
    Inventors: Rahul N. Manepalli, Hamid R. Azimi, John S. Guzek
  • Patent number: 9312233
    Abstract: Methods of forming molded panel coreless package structures are described. Those methods and structures may include fabrication of embedded die packages using large panel format and use of molding to improve rigidity of the panel, as well as to embed the die in a non-sacrificial mold material. The methods and structures described include methods for manufacturing thin, coreless substrate architectures which possess low warpage.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: April 12, 2016
    Assignee: Intel Corporation
    Inventors: Rahul N. Manepalli, Hamid R. Azimi, John S. Guzek
  • Patent number: 9257380
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 9, 2016
    Assignee: Intel Corporation
    Inventors: Ravi K. Nalla, John S. Guzek, Javier Soto Gonzalez, Drew W. Delaney, Hamid R. Azimi
  • Publication number: 20150179559
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 25, 2015
    Applicant: Intel Corporation
    Inventors: Ravi K. Nalla, John S. Guzek, Javier Soto Gonzalez, Drew W. Delaney, Hamid R. Azimi
  • Patent number: 8987065
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Ravi K. Nailla, John S. Guzek, Javier Soto Gonzalez, Drew W. Delaney, Hamid R. Azimi
  • Publication number: 20150003000
    Abstract: Methods of forming molded panel coreless package structures are described. Those methods and structures may include fabrication of embedded die packages using large panel format and use of molding to improve rigidity of the panel, as well as to embed the die in a non-sacrificial mold material. The methods and structures described include methods for manufacturing thin, coreless substrate architectures which possess low warpage.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Rahul N. MANEPALLI, Hamid R. AZIMI, John S. GUZEK
  • Publication number: 20140084467
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Inventors: Ravi K. Nalla, John S. Guzek, Javier Soto Gonzalez, Drew W. Delaney, Hamid R. Azimi
  • Patent number: 8618652
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, John S Guzek, Javier Soto Gonzalez, Drew W Delaney, Hamid R Azimi
  • Publication number: 20110318850
    Abstract: A microelectronic package includes a first substrate (120) having a first surface area (125) and a second substrate (130) having a second surface area (135). The first substrate includes a first set of interconnects (126) having a first pitch (127) at a first surface (121) and a second set of interconnects (128) having a second pitch (129) at a second surface (222). The second substrate is coupled to the first substrate using the second set of interconnects and includes a third set of interconnects (236) having a third pitch (237) and internal electrically conductive layers (233, 234) connected to each other with a microvia (240). The first pitch is smaller than the second pitch, the second pitch is smaller than the third pitch, and the first surface area is smaller than the second surface area.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Inventors: John S. Guzek, Mahadevan Suryakumar, Hamid R. Azimi
  • Patent number: 8035218
    Abstract: A microelectronic package includes a first substrate (120) having a first surface area (125) and a second substrate (130) having a second surface area (135). The first substrate includes a first set of interconnects (126) having a first pitch (127) at a first surface (121) and a second set of interconnects (128) having a second pitch (129) at a second surface (222). The second substrate is coupled to the first substrate using the second set of interconnects and includes a third set of interconnects (236) having a third pitch (237) and internal electrically conductive layers (233, 234) connected to each other with a microvia (240). The first pitch is smaller than the second pitch, the second pitch is smaller than the third pitch, and the first surface area is smaller than the second surface area.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 11, 2011
    Assignee: Intel Corporation
    Inventors: John S. Guzek, Mahadevan Survakumar, Hamid R. Azimi
  • Publication number: 20110101516
    Abstract: A microelectronic package includes a first substrate (120) having a first surface area (125) and a second substrate (130) having a second surface area (135). The first substrate includes a first set of interconnects (126) having a first pitch (127) at a first surface (121) and a second set of interconnects (128) having a second pitch (129) at a second surface (222). The second substrate is coupled to the first substrate using the second set of interconnects and includes a third set of interconnects (236) having a third pitch (237) and internal electrically conductive layers (233, 234) connected to each other with a microvia (240). The first pitch is smaller than the second pitch, the second pitch is smaller than the third pitch, and the first surface area is smaller than the second surface area.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Inventors: John S. Guzek, Mahadevan Survakumar, Hamid R. Azimi
  • Patent number: 7330357
    Abstract: A system may include a plurality of pliant conductive elements, a first end of one of the plurality of pliant conductive elements to be electrically coupled to a first electrical contact of an integrated circuit substrate and a second end of the one of the plurality of pliant conductive elements to be electrically coupled to a second electrical contact of an integrated circuit die.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: February 12, 2008
    Assignee: Intel Corporation
    Inventors: Gilroy J. Vandentop, Hamid R. Azimi